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Abstract

The electric and magnetic field patterns of all modes in a
cavity each form a complete set of eigenfunctions with the
square of the mode angular frequency serving as the corre-
sponding eigenvalue. Slater’s theorem provides a formula
for predicting the first-order shift in the eigenvalue when
the cavity surface is deformed slightly. A similar formula
for predicting the shift in the eigenfunction (i.e.the field
pattern) is derived from first principles. With this formula,
it is possible to apply perturbation theory to find higher-
order corrections to both the frequencies and the field pat-
terns of a deformed cavity.

INTRODUCTION

Given a known cavity geometry, the electric and mag-
netic field pattern of the eigenmodes may be numerically
solved by various computer codes. If the cavity geometry
is perturbed slightly, Slater’s theorem may be used to cal-
culate the first-order shift δω in the angular eigenfrequency
ω:

δω

ω
=

∫ (
μH2 − εE2

)
dτ

4U
(1)

where H and E are respectively the magnetic and electric
fields of the unperturbed cavity mode; μ is the permeabil-
ity; ε is the permittivity; and U is the total energy stored in
the unperturbed cavity mode. The integration occurs only
over the perturbed volume of the cavity space.

Eq. 1 allows us to calculate the new eigenfrequency of
the perturbed cavity without needing to bother with the
time and labor of numerically solving for the field pattern
of the new eigenmode. It would be helpful to have simi-
lar formulas for the field patterns. Once the perturbed field
patterns are known, the change in any cavity parameter or
figure of merit may be calculated. Fortunately, such formu-
las can be written by using perturbation theory to solve for
the new field patterns of the perturbed cavity modes. The
method outlined here for doing this is a minor extension of
Slater’s derivation of his theorem[1].

DEFINITIONS

The cavity volume is a region contained by a closed sur-
face which may be divided into regions having only one
of two possible boundary conditions: electric walls which
have E only normal to the surface EW while H has only
tangential components; and magnetic walls which have H
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only normal to the surface MW while E has only tangential
components.

The infinite set of electric field patterns for the cavity
eigenmodes form a complete set by which any divergence-
free vector field F may be uniquely described:

F =
∑

i

eiEi. (2)

The infinite set of magnetic field patterns for the cavity
eignemodes form their own complete set by which we
could expand the arbitrary vector field F:

F =
∑

i

hiHi. (3)

The field patterns satisfy the following orthogonality rela-
tionships:

ε

2Ui

∫
Ei ·Ejdτ = δij (4)

μ

2Ui

∫
Hi ·Hjdτ = δij (5)

where the integration takes place over the entire cavity vol-
ume. The field patterns have zero divergence and we as-
sume their curls are proportional to each other:

∇×Ei = kiZ0Hi (6)

∇×Hi =
ki
Z0

Hi (7)

ki =
ωi

c
(8)

c =
1√
εμ

(9)

Z0 =

√
μ

ε
. (10)

MODELING THE CAVITY

Maxwell’s equations allow us to predict, given known
boundary conditions, the distribution of E and H in space
and their evolution with respect to time. When E and H
are the fields contained in a cavity, Eq. 2 and Eq. 3 are
particularly useful:

E =
∑

i

eiEi (11)

ei =
ε

2Ui

∫
Ei · Edτ (12)

H =
∑

i

hiHi (13)

hi =
μ

2Ui

∫
Hi ·Hdτ. (14)
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The Ei and Hi are stationary; i.e. they do not change with
time. If the values of all ei and hi are known for all times
t, then we know E(t) and H(t) via Eq. 11 and Eq. 13. If
we know the values of E and H at all points in the cavity
at t = 0, then the initial conditions may be calculated by
performing the integrations in Eq. 12 and Eq. 14. The time
evolution of the expansion coefficients is then produced by
solving Maxwell’s equations. The time dependence of E
and H is completely contained in the time dependence of
the expansion coefficients ei and hi.

If the cavity is unperturbed, then the time dependence of
the expansion coefficients is trivial:

ei = ei(0) e
iωit (15)

hi = hi(0) e
iωit . (16)

If the cavity shape is slightly perturbed, then the Ei and Hi

are no longer eigenmodes, and Eq. 15 and Eq. 16 are no
longer solutions. Eq. 11 and Eq. 13 are still valid- the Ei

and Hi are still a complete set-but the solution is compli-
cated by the fact that the differential equations determining
the dynamics of the expansion coefficients are all linearly
coupled to each other. Only special linear combinations of
the expansion coefficients will have the simple time depen-
dence of Eq. 15 and Eq. 16:

ẽi = ei +
∑

j �=i

ajej (17)

h̃i = hi +
∑

j �=i

bjhj. (18)

It follows that the stationary field patterns which undergo
simple harmonic oscillations are

Ẽi = Ei +
∑

j �=i

ajEj (19)

H̃i = Hi +
∑

j �=i

bjHj . (20)

These are the eigenmodes of the perturbed cavity. The new
angular eigenfrequencies, to first order, are determined by
Eq. 1:

ω̃i = ωi + δωi (21)

By deriving the general form of Maxwell’s equations in
terms of the expansion coefficients, not only will we be
able to calculate the values of the cj , but also the higher
order corrections to Eq. 21.

MAXWELL’S EQUATIONS

To find the general differential equation which deter-
mines the time evolution of the expansion coefficients, we
must reformulate Maxwell’s equations in terms of them.
Beginning with Faraday’s law

∇× E = −μ
∂H

∂t
(22)

we take the dot product of both sides with Hi and integrate
over the cavity volume:

∫
Hi · (∇×E) dτ = −μ

∫
Hi · ∂H

∂t
dτ. (23)

Substituting Eq. 13 and Eq. 64 into equation 23 gives Fara-
day’s law in terms of the expansion coefficients:

ωiei +
1

2Ui

∮
(E×Hi) · da = −dhi

dt
. (24)

Next, we take the dot product of Ei with both sides of Am-
pere’s law:

∇×H = ε
∂E

∂t
(25)

∫
Ei · (∇×H) dτ = ε

∫
Ei · ∂E

∂t
dτ. (26)

Substituting Eq. 11 and Eq. 68 into Eq. 26 gives Ampere’s
law in terms of the expansion coefficients:

ωihi − 1

2Ui

∮
(Ei ×H) · da =

dei
dt

. (27)

Eq. 24 and Eq. 27 are two coupled, first-order differen-
tial equations which are decoupled into two independent,
second-order differential equations by solving for ei or hi

in one expression and substituting into the other:

d2ei
dt2

+ ω2
i ei = − ωi

2Ui

∮
(E×Hi) · da

− 1

2Ui

d

dt

∮
(Ei ×H) · da (28)

d2hi

dt2
+ ω2

i hi = +
ωi

2Ui

∮
(Ei ×H) · da

− 1

2Ui

d

dt

∮
(E×Hi) · da. (29)

PERTURBATION THEORY

Now, we would like to describe the fields inside a cavity
which has exactly the same shape except for a small, local
deformation on the boundary. If we knew the field patterns
of the eigenmodes of the new, perturbed system, then any
field within the new cavity boundary could be described in
terms of this complete set, and Maxwell’s equations would
take the same form as Eq. 24 and Eq. 27:

ω̃iẽi +
1

2Ũi

∮ (
E× H̃i

)
· dã = −dh̃i

dt
. (30)

ω̃ih̃i − 1

2Ũi

∮ (
Ẽi ×H

)
· dã =

dẽi
dt

(31)

where all surface integrations occur over the perturbed ge-
ometry. In this case, the surface integrals in Eq. 30 and
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Figure 1: Along the perturbed electric wall, both the per-
turbed fields and the unperturbed fields are non-zero; how-
ever, the perturbed fields are zero along the unperturbed
geometry.

Eq. 31 are all zero and the perturbed expansion coefficients
exhibit simple harmonic motion:

ẽi = ẽi(0) e
i ω̃it (32)

h̃i = h̃i(0) e
i ω̃it . (33)

While this solution is simple, it requires numerically solv-
ing for the perturbed field patterns, and we would like to
avoid doing this extra work. We choose instead to analyze
the fields contained within the perturbed boundary using
the complete set of eigenmodes of the unperturbed cavity.
Maxwell’s Equations now take the form

ωiei +
1

2Ui

∮
(E×Hi) · dã = −dhi

dt
, (34)

ωihi − 1

2Ui

∮
(Ei ×H) · dã =

dei
dt

(35)

and produce the same differential equations as Eq. 28 and
Eq. 29 but with the surface integration performed over the
perturbed geometry ã. When the cavity is unperturbed, the
right sides of Eq. 28 and Eq. 29 are zero and each differen-
tial equation is independent of the rest. The ith unperturbed
cavity mode oscillates with angular frequency ωi. When
the cavity geometry is perturbed, the right sides of Eq. 28
and Eq. 29 are generally finite and the differential equa-
tions are now linearly coupled to each other. By evaluating
the surface integrals over the perturbed geometry, the cou-
pling coefficients are then known and the new eigenvectors
and new eigenvalues may be found. The surface integrals
can be simplified by noting that the total perturbed fields, E
and H, will be equal to that of the unperturbed fields for re-
gions far from the perturbation; therefore, the contribution
to the surface integrals is zero. The surface integrals only
need to be evaluated at places where the perturbed fields
are different from the unperturbed ones-i.e at the locations
of the perturbation; see Fig. 1.

When a magnetic wall is perturbed, the second integral
on the right side of Eq. 28 is zero since n×H = 0 along the
perturbed magnetic wall of ã. The remaining integration to

perform is
∫

˜MW
(E×Hi) · dã =

∫

δ˜MW
(E×Hi) · dã (36)

where δM̃W is the area on the perturbed surface that de-
viates from the unperturbed magnetic wall. The integral
can be more easily evaluated by including the unperturbed
surface into the region of integration. This is permissible,
since, at this location, E = 0 along the unperturbed mag-
netic wall, the contribution to the total surface integral is
zero:

∫

δ˜MW
(E×Hi) · dã = −

∮

δ˜MW
(E×Hi) · dã. (37)

This allows us to use the divergence theorem to evaluate
the left side of equation 37:

∮

δ˜MW
(E×Hi) · dã =

∫

δ˜MW
∇ · (E×Hi) dτ̃ . (38)

Substituting equation 11 into the right side of equation 38
gives
∫

δ˜MW
∇ · (E×Hi) dτ̃ =

∑

j

ej

∫

δ˜MW
∇ · (Ej ×Hi) dτ̃ .

(39)
The right side of equation 39 can be further evaluated by
noting that

∇ · (Ej ×Hi) = Hi · (∇×Ej)−Ej · (∇×Hi) . (40)

Upon substituting Eq. 6 and Eq. 7 into the right side of
Eq. 40 we have
∫

δ˜MW
∇ · (E×Hi) dτ̃

=
∑

j

ej

∫

δ˜MW
(ωjμHi ·Hj − ωiεEj · Ei) dτ̃ .

(41)

We define a new matrix

Mij ≡
∫

δ˜MW
(ωjμHi ·Hj − ωiεEj ·Ei) dτ̃ (42)

and have finally
∫

δ˜MW
(E×Hi) · dã = −Mijej. (43)

For perturbations along electric walls, it is similarly conve-
nient to define a new matrix

Eij ≡
∫

δ˜EW
(ωiμHj ·Hi − ωjεEi ·Ej) dτ̃ (44)

because it will be found that the second integral on the right
side of Eq. 29 is zero since n×E = 0 along the perturbed
electric wall of ã. It is similarly found that the remaining
integration may be written as

∫

δ ˜EW
(Ei ×H) · dã = −Eijhj. (45)
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Magnetic Walls

For the case that perturbations occur only along electric
walls, the differential equations which determines the time
evolution of the expansion coefficients are

d2ei
dt2

+ ω2
i ei =

∑

j

(
ωi

2Ui

)

Mijej (46)

d2hi

dt2
+ ω2

i hi =
∑

j

(
ωj

2Ui

)

Mijhj . (47)

Electric Walls

For the case that perturbations occur only along mag-
netic walls, the differential equations which determines the
time evolution of the expansion coefficients are

d2ei
dt2

+ ω2
i ei = −

∑

j

(
ωj

2Ui

)

Eijej (48)

d2hi

dt2
+ ω2

i hi = −
∑

j

(
ωi

2Ui

)

Eijhj . (49)

Electric and Magnetic Walls

For the case that perturbations occur along both electric
and magnetic walls, the differential equations which deter-
mines the time evolution of the expansion coefficients are

d2ei
dt2

+ ω2
i ei =

∑

j

[(
ωi

2Ui

)

Mij

−
(

ωj

2Ui

)

Eij

+
∑

k

(
EikMkj

4UiUk

)]

ej. (50)

d2hi

dt2
+ ω2

i hi =
∑

j

[(
ωj

2Ui

)

Mij

−
(

ωi

2Ui

)

Eij

+
∑

k

(
MikEkj

4UiUk

)]

hj . (51)

First-Order Perturbations

For an unperturbed cavity, the differential equation for
the ith electric expansion coefficient is

d2ei
dt2

= −
∑

j

ω2
i ejδij . (52)

When the cavity is perturbed, these differential equations
are linearly coupled since the Ei are no longer eigenmodes

for the new perturbed geometry. In this case, Eq. 52 be-
comes

d2ei
dt2

=
∑

j

Aijej. (53)

The matrix Aij may be factored as

Aij = −ω2
i δij + αij (54)

where the components of αij are found by inspecting the
right sides of Eq. 46, Eq. 48, or Eq. 50 for the case that the
perturbation is along a magnetic wall, an electric wall, or
both electric and magnetic walls respectively. When solv-
ing for the new eigenvalues and eigenvectors, we assume
that the perturbation is small enough that only terms to first-
order in the components of αij need to be retained. Ac-
cording to this first-order approximation, the new ith eigen-
value is

ω̃2
i = ω2

i + αii. (55)

This first-order correction to the angular frequency results
in the same formula as in Slater’s theorem. The new eigen-
mode electric field pattern for the perturbed cavity is pri-
marily that of the unperturbed cavity with an additional,
small correction from all of the cavity higher-order and
lower-order modes as expressed in Eq. 19. To first-order,
the formula for expansion coefficient aj is

aj =
αij

(ω2
i − ω2

j )
. (56)

Similarly, the differential equation for the ith cavity mode
magnetic field may be written as

d2hi

dt2
=

∑

j

Bijhj (57)

where the matrix Bij may be factored as

Bij = −ω2
i δij + βij (58)

and the components of βij are found by inspecting the right
sides of Eq. 47, Eq. 49, or Eq. 51 for the case that the per-
turbation is along a magnetic wall, an electric wall, or both
electric and magnetic walls respectively. The expression
for the first order correction to the eigenvalue

ω̃2
i = ω2

i + βii (59)

is identical to Eq. 55 and the first-order formula for the
expansion coefficients in Eq. 20 is

bj =
βij

(ω2
i − ω2

j )
. (60)

DISCUSSION

Eq. 56 and Eq. 60 provide a formula for the first-order
correction to the electric and magnetic field patterns; how-
ever, higher-order corrections are possible by retaining
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higher-order terms of the αij and βij elements in the al-
gebraic solution for aj and bj . Additionally, higher-order
corrections to the angular frequency which exceed the ac-
curacy of Slater’s theorem may be possible. These higher-
order corrections would involve the additional computa-
tional complexity of the non-orthogonality of Ei and Hi

in the region of the perturbed cavity. Eq. 4 and Eq. 5 are
no longer true when the volume integration is performed
over the perturbed geometry. There is an additional first-
order correction to the orthogonality relation whose ele-
ments will appear in the final results for orders second or
higher.

The first-order derivation involved expansions over an
infinite set of cavity modes; however, a real numerical
solver will have an upper limit to the higher-order modes
which it can faithfully reproduce. This upper limit on
the higher-order modes determines the lower limit on the
size of the cavity wall deformation, since a perturbation
of size λ will require the higher-order mode expansions in
Eq. 19 and Eq. 20 to be carried out to at least the frequency
ν ≈ c/λ, where c is the speed of light, for accurate conver-
gence to the perturbed field.

The case of degenerate modes may be handled using the
conventional approach of degenerate perturbation theory:
any degeneracies or near-degeneracies are identified and
diagonalized first, so that the corresponding elements of
αij and βij are zero.

For cavities which are azimuthally symmetric, the mode
patterns and frequencies may be numerically calculated
with a 2D code. The perturbative formulas for the field pat-
terns have the advantage of being applicable for perturba-
tions which are not azimuthally symmetric while requiring
field values from only the azimuthally symmetric cavity.
In this way, the use of computationally intensive 3D codes
may be avoided.

APPENDIX

Some care is required in finding an expression for the
expansion coefficient of the curl of either E or H. We are
often interested in cases where both E and H have tangen-
tial components along some portion of the cavity bound-
ary, allowing power transfer; however, either Ei or Hi will
have zero tangential component along the boundary. For
this reason, the rate of convergence of the infinite series
in Eq. 11 or Eq. 3 will be much lower at the boundaries.
For such cases of non-uniform convergence, the limiting
process of the infinite expansion does not generally com-
mute with the limits implicit in the derivatives of ∇×E or
∇×H: i.e. the curl of the infinite expansion will not equal
the infinite expansion of the curl. We start by noting that

∇ · (E×Hi) = Hi · (∇×E)

−E · (∇×Hi) , (61)

∫
∇ · (E×Hi) dτ =

∮
(E×Hi) · da, (62)

∮
(E×Hi) · da =

∫
Hi · (∇×E) dτ

−
∫

E · (∇×Hi) dτ. (63)

After substituting Eq. 5 and Eq. 7 into Eq. 63, we arrive at
an expression for the ith expansion coefficient for the curl
of E:

∫
Hi · (∇×E) dτ =

∮
(E×Hi) · da

+

(
2Uiki
εZ0

)

ei. (64)

There is an extra term on the right side of this equation
which does not appear if one simply takes the curl of both
sides of equation 11. By including the extra term on the
right of equation 64, we can now use these field patterns to
describe more general cases.

A similar term is added to expansion for the curl of H:

∇ · (Ei ×H) = H · (∇×Ei)

−Ei · (∇×H) (65)
∫

∇ · (Ei ×H) dτ =

∮
(Ei ×H) · da (66)

∮
(Ei ×H) · da =

∫
H · (∇×Ei) dτ

−
∫

Ei · (∇×H) dτ. (67)

After substituting Eq. 4 and Eq. 6 into Eq. 67, we arrive at
an expression for the ith expansion coefficient for the curl
of H:

∫
Ei · (∇×H) dτ =

(
2UikiZ0

μ

)

hi

−
∮

(Ei ×H) · da. (68)

There is an extra term on the right side of this equation
which does not appear if one simply takes the curl of both
sides of equation 13.
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