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Abstract 
Phase and amplitude stabilization of the fields in 

superconducting cavities in the presence of 
ponderomotive effects and microphonics was one of the 
major challenges that had to be surmounted in order to 
make superconducting rf accelerators practical.  This was 
of particular concern in low-velocity proton and ion 
accelerators since the beam loading was often negligible, 
but was usually not relevant in electron accelerators since 
the beam loading was often high and the gradients low.  
More recent or future applications of electron linacs – for 
example JLab upgrade, energy recovering linacs (ERLs)   
– will operate at increasingly higher gradients with little 
beam loading, and the issues associated with 
microphonics and ponderomotive instabilities will again 
become relevant areas of research.  This paper will 
describe the ponderomotive instabilities and the 
conditions under which they can occur, and review the 
methods by which they, and microphonics, can be 
overcome. 

HISTORICAL BACKGROUND 
Ponderomotive instabilities were first observed in 

normal conducting resonators in the 1960s in the Soviet 
Union [1-3].  In that work stability conditions were 
derived using energetic arguments, comparing the rate of 
transfer of energy from the electromagnetic mode to the 
mechanical mode and the rate of dissipation of energy of 
the mechanical mode.  The analysis was valid when the 
decay time of the electromagnetic mode was much less 
that the period of the mechanical mode ( 1µτ Ω � ), or 
when the rate of transfer of energy was very high. 

In the late 60s early 70s, as part of the R&D activities at 
Karlsruhe toward the development of a superconducting 
proton accelerator, Schulze [4,5] extended the analysis of 
ponderomotive instabilities in generator-driven systems, 
with and without phase and amplitude feedback, to 
arbitrary µτ Ω , which would be appropriate for 
superconducting structures.  His analysis was based on 
control system methods (Laplace transforms, transfer 
functions, etc.).  That work made first mention and 
demonstrated the effectiveness of using ponderomotive 
effects to damp mechanical modes. 

In the mid 70s, as part of the R&D activities at Caltech 
toward the development of a heavy-ion superconducting 
accelerator, Delayen [6,7] analyzed the behavior of 
resonators operated in self-excited loops, with and 
without phase and amplitude feedback, in the presence of 

ponderomotive effects and microphonics.  That analysis 
was also based on control systems methods and made use 
of stochastic analysis to quantify the performance of the 
feedback systems.  That work also introduced the I/Q 
control method as well as microprocessor-based control 
systems for superconducting cavities. 

THE ADIABATIC THEOREM AND 
SUPERCONDUCTING CAVITIES 

An important theorem of classical mechanics states that 
for periodic system whose properties change slowly with 
time (as defined by a slowness parameter ε ) the action 
J p dqv= Ú  changes more slowly than a power of ε .  
When applied to harmonics oscillators – where the action 
is /U ω , the ratio of energy and frequency– then /U ω  

changes more slowly than any power of 2

1 d
dt
ωε

ω
=  if the 

frequency changes smoothly, i.e. it is an adiabatic 
invariant to all orders [8].  The dimensionless parameter 
ε is the relative change in frequency during one radian.  
Since in the case of superconducting cavities it would be 
difficult to change the frequency significantly during one 
radian, the action /U ω  can be assumed to be constant 
and, in particular, any relative change in frequency is 
equal to any relative change in energy content: 

U
U

ω
ω

∆ ∆
= .   

In the quantum picture, this would mean that the system 
stays in the same eigenstate and that the number of 
photons remains constant ( U N ω== ). 

The energy content in a resonator is given by 

 2 20 0( ) ( )
4 4V

U dv H r E rµ εG GÈ ˘= +Í ˙Î ˚Ú , (1) 

and the change in energy content is equal to the work 
done by the radiation pressure: 

 2 20 0( ) ( ) ( ) ( )
4 4S

U dS n r r H r E rµ εξ∆
GG G G G Gi È ˘= - -Í ˙Î ˚Ú  (2) 

where ( )n r
G G and ( )rξ

G G  are the normal vector and the 
displacement vector, respectively, at location r

G . 
The relative change in frequency is then given by 

 
2 20 0

2 20 0

( ) ( ) ( ) ( )
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( ) ( )
4 4

S

V

dS n r r H r E r

dv H r E r

µ εξ
ω

µ εω
∆

GG G G G Gi

G G

È ˘-Í ˙Î ˚= -
È ˘+Í ˙Î ˚

Ú

Ú
, (3) 

which, in microwave engineering, is known as Slater’s 
formula [9]. 
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PONDEROMOTIVE EFFECTS 
Any cavity will have an infinite number of mechanical 

eigenmodes of vibration represented by a complete 
infinite set of orthonormal displacement functions ( )rµφ G .  
The actual displacements of the cavity wall, ( ),rξ G and the 
forces on the wall, ( ),F r

G  can be expanded into the 
functions ( )rµφ G : 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

S

S

r q r q r r dS

F r F r F F r r dS

µ µ µ µ
µ

µ µ µ µ
µ

ξ φ ξ φ

φ φ

= =

= =

Â Ú

Â Ú

G G G G

G G G G  (4) 

where qµ  is the amplitude of mechanical mode µ whose 
equation of motion is 

 d L L F
dt q q q µ

µ µ µ

Φ
� �
∂ ∂ ∂

- + =
∂ ∂ ∂

 (5) 

with ,  where  , ,  and  L T U T U Φ= -  are the kinetic energy, 
the potential energy, and the power dissipation, 
respectively. 

 
2 2

2
2 2

1 1, = , =
2 2

q c q
U c q T c µ µ µ

µ µ µ
µ µ µµ µ µτ

Φ
Ω Ω

� �
= Â Â Â  (6) 

where cµ  is the elastic constant, µΩ is the frequency, and 

µτ  is the decay time of mechanical mode µ.  Equation (5) 
then becomes 

 
2

22q q q F
c

µ
µ µ µ µ µ

µ µτ
Ω

Ω�� �+ + =  (7) 

Since the frequency shift µω∆  caused by mechanical 
mode µ  is directly proportional to qµ , and the force Fµ  
due to the radiation pressure is proportional to the square 
of the field amplitude V,  the equation for µω∆  is  

 2 2 22 ( )k V n tµ µ µ µ µ µ
µ

ω ω ω
τ

∆ ∆ Ω ∆ Ω�� �+ + = - +  (8) 

The constant kµ  (the Lorentz coefficient for that mode) 
represents the coupling between the rf field and 
mechanical mode µ, and ( )n t  is an additional driving term 
representing external vibrations or microphonics.  The 
total frequency shift is ( ) ( )t tµ

µ
ω ω∆ ∆=Â , and in steady-

state 2
0 0 V kµ µ

µ µ
ω ω∆ ∆= = -Â Â , and k kµ

µ
=Â is the static 

Lorentz coefficient of the cavity. 
When analyzing the stability of the system or its 

performance in cw operation, Eq. (8) can be linearized 
around steady-state and becomes 

 2 2 2
0

2 2 ( )k V v n tµ µ µ µ µ µ
µ

δω δω δω δ
τ

Ω Ω+ + = - +�� �  (9) 

where 0µ µ µω ω δω∆ ∆= +  and 0(1 )V V vδ= + . 
In the frequency domain the response from amplitude 

fluctuation to frequency fluctuation, also known as the 
Lorentz transfer function, is then 

 
( )
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0

2 2
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k V
G

v i

µ µ µ
µ

µ
µ

δω ω
ω

δ ω ω ω
τ

Ω

Ω

-
= =
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The total Lorentz transfer function for a cavity is the 
sum of all the transfer functions for the individual 
mechanical modes.  It can be obtained by operating the 
cavity in cw mode at some relatively high field (since the 
response is proportional to 2

0V ) and introducing a small 
modulation of the field of amplitude vδ  and frequency ω  
and measuring the amplitude and the phase of the 
modulation of the cavity frequency as a function of ω .  
Examples of Lorentz transfer functions are shown in Fig. 
1 for a double-spoke cavity and a 6-cell elliptical cavity.  
For the former, only a few low-frequency mechanical 
modes exist and the transfer function is simple, while for 
the latter it is much more complex due to the large 
number of low-frequency modes. 

 
Figure 1: Lorentz transfer function of a β=0.61, 805 MHz 
6-cell elliptical cavity (top) [10], and of a double-spoke 
352 MHz, β=0.4 cavity (bottom) [11]. 

Equation (8) describes how the cavity frequency is 
affected by the field amplitude.  On the other hand the 
field amplitude depends on the frequency detuning 
between the cavity and the rf source.  Such a closed 
feedback system between the electromagnetic mode and 
the mechanical modes can lead to instabilities.  One of 
them, the monotonic instability is the familiar jump 
phenomenon illustrated in Figure 2 that can occur on the 
low-frequency side of the resonance. 
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Figure 2: Resonance curve and phase shift across a cavity 
when driven by a fixed-frequency source in the presence 
of ponderomotive effects. 

There is another type of instability that can occur on the 
high-frequency side of the resonance, the oscillatory 
instability, characterized by an exponential growth of the 
amplitude of mechanical vibrations.  These two types of 
instability are present in generator driven systems in the 
absence of phase and amplitude feedback.  Introduction of 
feedback can remove those instabilities [4].  Cavities 
operated in self-excited loops in the absence of feedback 
are free of ponderomotive instabilities [6].  Stability 
criteria in the presence of beam loading have also been 
derived [12]. 

MICROPHONICS 
Microphonics are the changes in cavity frequency 

caused by connections to the external world [ ( )n t  in 
Eq. (8)], such as vibrations, pressure fluctuations, etc. The 
ponderomotive term 2 2k Vµ µΩ-  cannot be ignored since, in 
the presence of phase and amplitude feedback, it can 
affect, positively or negatively, the response of the cavity 
frequency to external noise; in particular ponderomotive 
effects can be used to damp the mechanical modes and 
reduce microphonics [5, 13].   The presence of external 
noise ( )n t  will generate a fluctuation of the cavity 
frequency exδω  through the transfer function Gµ  of a 
harmonic oscillator defined in Eq. (10) as shown in Fig. 3. 

 

             
Figure 3: Transfer function representation of 
microphonics exδω  generated by an external disturbance 

( )n t . 

There can be several different kinds of external driving 
terms ( )n t  for the microphonics.  The 2 extreme cases 
would be a deterministic harmonic drive signal with a 
well defined frequency and amplitude, and the other a 
purely stochastic gaussian white noise drive signal.  The 
former could originate from a well defined vibration 
source such as a pump or a motor; the latter would be due 
to broadband (relative to the bandwidth of the mechanical 
mode) ambient noise. The probability density (histogram) 
of the frequency response exδω  to those 2 different 
driving signals is shown in Fig. 4.  
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Figure 4: Probability density of cavity frequency 
fluctuations exδω  generated by a sinusoidal (top) or 
gaussian white noise (bottom) external disturbance ( )n t  . 

For the sinusoidal drive the probability density of exδω  
is  

 
2 2
max

1( )p δω
π δω δω

=
-

 (11) 

while for the white noise driving term is it 

 1( ) exp
2

2
1
2p

ωω
δω

σ π
δω
σ

È ˘
Í ˙Ê ˆ
Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜Ë ¯Í ˙Î ˚

= -   (12) 

where δω is the deviation of the instantaneous cavity 
frequency from its average.  Examples of these two types 
of probability densities have been observed (see Fig. 5), 
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although the gaussian density is much more common and 
has been seen over 5 orders of magnitude [14].  The 
presence of a non-gaussian microphonics probability 
density is often indicative of the presence of localized 
source of vibration that needs to be better isolated. 

 

Figure 5: Examples of bimodal (top) and gaussian 
(bottom) probability densities measured on SNS cavities 
[10]. 

From a long time series of ( )ex tδω , its autocorrelation 
function can also be calculated.  The autocorrelation 
function of a stationary signal ( )x t  is defined as 

 
0

1( ) ( ) ( ) lim ( ) ( )
T

x T
R x t x t dt x t x t

T
τ τ τ

Æ•
= + = +Ú  (13) 

In the case of a harmonic oscillator representing a 
mechanical mode of frequency µΩ and decay time µτ , 
driven by a periodic signal of frequency dω , the 
normalized autocorrelation function of the output exδω  is 

 ( )( ) cos( )
(0) d

Rr
R

δω
δω

δω

ττ ω τ= =  (14) 

The correlation function is sinusoidal at the frequency of 
the drive signal and remains finite for arbitrary long time 
separating 2 measurements. 

If instead the harmonic oscillator is driven by a 
gaussian white noise then the normalized autocorrelation 
function is 

 /( )( ) cos( )
(0)

Rr e
R

µτ τδω
δω µ

δω

ττ τΩ -= =  (15) 

In this case the correlation function has the frequency and 
the decay time of the mechanical mode.  This implies that 
values of the microphonics separated by more than µτ  are 
uncorrelated and one cannot be used to estimate the other. 

 
Figure 6: Normalized autocorrelation function of the 
output of a harmonic oscillator when driven by a 
sinusoidal input (top) and gaussian white noise (bottom). 

 
Such autocorrelation functions were calculated using 

Eq.(13) for microphonics measurements made on SNS 
cavities, and examples are shown in Fig. 7.  The picture at 
the top shows an example where microphonics are caused 
mainly by 2 sinusoidal driving terms. The picture on the 
bottom displays the behavior when microphonics are 
generated by white noise and, as a result, values of the 
frequency fluctuation separated by more than a decay time 
of the mechanical mode are uncorrelated.  This implies 
that a feedforward control system to reduce the level of 
microphonics can use only measurements performed in 
the past no further than the decay time of the mechanical 
mode.  An autocorrelation function for the microphonics 
that does not decay to 0, as in top Fig. 7, is indicative on a 
non-stochastic driving term that could be removed by 
better isolation or cancelled by feedforward control.  

 Figure 7: Examples of autocorrelation function of 
frequency fluctuations measured on SNS cavities. At the 
top microphonics are generated by 2 single-frequency 
sources; below they are generated by broad-band noise. 
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External disturbances ( )n t  will generate microphonics 
exδω , which in turn will cause fluctuations of the phase 

( )δϕ  and amplitude ( )vδ of the fields in the cavity. 

 
Figure 8: Transfer function representation of the field 
errors caused by an external disturbance ( )n t . 

The transfer functions aG and Gφ include the properties 
of the cavity and of the rf control system [6,12].  
Assuming that ( )n t  is a white noise stationary stochastic 
process of spectral density 2A , the mean square values of  

,exδω  ,vδ  and δϕ  are 
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 (16) 

Equations (16) establish the relationships between the 
measured microphonics ( ),exδω  the properties of the 
mechanical mode of the cavity ( , ,  and ),Gµ µ µτΩ  the 
properties of the rf control system ( , )aG Gφ , and the 
residual field errors ( , )vδ δϕ . 

FINAL COMMENTS 
Stabilization of the rf fields in superconducting cavities 

in the presence of ponderomotive effects and 
microphonics was one of the outstanding issues that 
needed to be addressed early on in order to make srf 
accelerators practical.  This was particularly crucial for 
heavy ion accelerators since the currents were very low 
and the accelerating structures lacked mechanical rigidity.  
This challenge was met by a combination of analytical 
and theoretical work, the development of new 
superconducting structures, and the adoption of more 
advanced electronic control system.  While these issues 
are now well understood they are being rediscovered in 
medium- to high-β applications for relatively low beam 
current.   

These applications present new challenges.  They tend 
to be of a much larger scale that the heavy-ion 
accelerators of decades past: the cavities are larger and 
they operate at much higher gradient (as a result they have 
a much larger energy content), and they are in larger 
number.  Thus there is a need for optimization since 
unnecessary conservatism would be expensive. 

While some new medium- to high-beta accelerators 
would have lower current than previous ones (RIA and 
the JLab upgrade for example), the currents are still finite 

and the presence of the current can modify the stability 
conditions and needs to be taken into account [12]. 

In the ERL applications, the low net beam current 
results from the not-quite-perfect cancellation of 2 large 
currents.  Small fluctuations in any accelerator parameter 
can lead to large random fluctuation in the beam loading, 
possibly coupling to the ponderomotive effects and 
leading to instabilities.   
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