Mechanical Properties of High Purity Niobium Novel Measurements

11th Workshop on RF Superconductivity

September 8-12, 2003

G. R. Myneni, S. Agnew, G. Ciovati, P. Kneisel,

W. A. Lanford, R. L. Paul, and R. E. Ricker

Overview -

. Why is an interest in mechanical properties of RRR niobium again?

. What are the Novel Measurements!!

. Where are we going from here?

SNS Cavity Field Profile -

Gianluigi Ciovati

SNS β =0.61 cavity #3

Tefferson Lab

SRF 2003

Cavity Tuning Sensitivity

Gianluigi Ciovati

SNS β=0.61 cavity #4 heat treated at 600C for 10 hr - Longitudinal tuning sensitivity

Jefferson Pab

SRF 2003

Qo Vs Eacc

Thomas Jefferson National Accelerator Facility Institute for SRF Science and Technology

Tensile sample

Does not meet ASTM standards but not required since used at very low strain rates

Tefferson Lab

SRF 2003

Tensile apparatus

Unique System

Wide temperature range down to 4.2 K Strain rate variation – six orders

Measurement Accuracies

. Strain Measurement Accuracy

 $\pm 2\%$

Strain rate can be varied from 1.e-6 s⁻¹ to 10 s⁻¹

. Accuracy of the Stress Measurement

± 1%

. Accuracy of the Percentage of Elongation

 $\pm 1\%$

. Measurements can be made from 4.2 K to ambient temperature

Jefferson Lab

Apparent YM Issue

Jefferson Lab

SRF 2003

TD375 stress-strain

TD RRR niobium heat treted at 1250 C for 6 hours

Tefferson Lab

SRF 2003

TD data summary -

Summary of the TD niobium mechanical properties

Niobium	Yield Strength (KSI)		Tensile Strength (KSI)		% Elongation		RRR	Hv
	SSR	FSR	SSR	FSR	SSR	FSR		
ASR	7.4	7.9	21	24	44	48	260	52
600 C	7.0	7.5	21	22	48	49	300	47
800 C	5.7		19		47		350	43
1250 C	4.5	6.3	15	19	32	33	375	36

 $SSR \sim 5.5E\text{-}5$

FSR ~ 2.0e-4 up to Yield point and 1.0e-3 until break

Jefferson Lab

SRF 2003

WC Reactor Grade stress-strain

End Group Reactor Grade Niobium

Jefferson Lab

SRF 2003

Interstitials vs RRR

SRF 2003

Ultrasonic Velocity Measurements (University of Va)

$$C_{33} = \rho v_{l3}^2$$
 . Elastic properties

$$C_{44} = \rho v_{s2}^2$$

$$C_{55} = \rho v_{s1}^2$$

- Elastic properties may be accurately measured by the pulse-echo technique
 - Avoid potential problems of tensile tests (anelasticity, microyielding, etc.)

. Assess anisotropy directly by changing the direction of shear wave

Thomas Jefferson National Accelerator Facility
Institute for SRF Science and Technology

600

Elastic behavior normal for niobium (E = 110 ± 3 GPa)

- Anisotropy small ($\beta \le 1.03$)
- Reproducible trend with annealing in all lots

Thomas Jefferson National Accelerator Facility
Institute for SRF Science and Technology

Jefferson Pab

4000

20'

SRF 2003 3 September '03

RRR Niobium Rolled Sheet Textured

- . Due to deformation processing and recrystalization
- . Anisotropy of single crystal manifest in textured polycrystal
 - Nb Zener anisotropy parameter, Z = 0.55, is low (many cubic metals Z > 1)

$$Z = \frac{2 C_{44}}{C_{11} - C_{12}}$$

- . May predict response of polycrystal response if single crystal behavior and texture are known.
 - . Using averaging schemes such as Voigt, Ruess, Hill
- Initial studies using x-ray diffraction of the sheet surface showed no change in the texture with annealing.

Electron Backscattered Diffraction (EBSD)

- Utilizes automated indexing diffraction patterns
- Provides a method for examining crystallography and crystallographic orientation at a single point in materials
 - ◆grain boundary crystallography
 - ◆intragranular substructure (mosaic)
 - ◆microtexture

Schematic of EBSD

SRF 2003

EBSD maps through sheet thickness (UVa)

- •As-received P sample exhibits bands of fine and coarse grains typical of these samples.
- Different colors represent orientations as shown in the legend, where the Euler angles are according to Bunge's convention
- White spots represent positions were surface roughness obscured the EBSD detector

Tefferson Lab

SRF 2003

EBSD maps of sheet cross-section provide bulk texture (UVa)

■Pole figures from as-received and annealed (800C) samples (lot P) reveal two facts:

- ◆Less cube component than in surface (x-ray).
- ◆Strengthening of texture with annealing

Jefferson Lab

SRF 2003

Cold neutron PGAA spectrometer at the NIST Center for Neutron Research

Jefferson Lab

Schematic drawing for the NIS measurement setup

Tefferson Lab

SRF 2003

Treatment of niobium samples measured

Sample	Measured as received?	Measured following:	Measured following:	Measured following:		
	(No heating)	Vacuum heating	Acid treatment 1 duration (min)	Vacuum heating 2	Acid treatment 2 duration (min)	
Nb 2	No	800 °C / 6 h	1			
Nb 3	No	700 °C / 6 h	2			
Nb 4	No	750 °C / 6 h	3	800 °C / 6 h		
Nb 5	No	600 °C / 10 h	0.5	800 °C / 6 h	5	
Nb 6	Yes		4			
P1	Yes	800 °C / > 48 h				
P2	Yes	800 °C / > 48 h				
K1	Yes	800 °C / > 48 h				
K2	Yes	800 °C / > 48 h				

Jefferson Lab

SRF 2003

Hydrogen fractions measured in the niobium samples

Sample	% atom fraction hydrogen (determined relative blank)							
	As received After vacuum heating #1		After acid treatment #1		After vacuum heating #2 (Nb 4) and acid treatment #2 (Nb 5)			
		PGAA	PGAA	NIS	PGAA	NIS		
Nb 2		0.138 ± 0.025	0.257 ± 0.041	0.153 ± 0.032				
Nb 3		0.156 ± 0.026	0.169 ± 0.028	0.167 ± 0.034				
Nb 4		0.122 ± 0.028	0.114 ± 0.027	0.083 ± 0.020	≤ 0.03	≤ 0.03		
Nb 5		0.107 ± 0.025	0.107 ± 0.025	0.113 ± 0.024	0.396 ± 0.037	0.352 ± 0.070		
Nb 6	0.126 ± 0.027		0.140 ± 0.028	0.150 ± 0.032				
P1	0.03 ± 0.02	<u>≤</u> 0.03						
P2	0.03 ± 0.02	≤ 0.03						
K1	≤ 0.04	<u>≤</u> 0.03						
K2	0.03 ± 0.02	≤ 0.03						

SRF 2003

NRA Hydrogen depth profiles

Hydrogen Depth Profile in Niobium

SRF 2003

3 September '03

Jefferson Pab

Dynamic Mechanical Analysis

(Internal Friction)

Measures the phase shift between stress and strain as a function of temperature

Hydrogen and Other Interstitials can Have Four Different Types of Interactions:

- 1. Snoek Dislocation drag (diffusion)
- 2. Precipitation Hydrides, etc.
- 3. Pairing Effects solute-solvent or solute-solute pair interactions (e.g. Zener effect)
- 4. Gorsky Large scale diffusion effects

Other Peaks:

- Bordoni Cold work and dislocation density related
- Grain Boundary Interface sliding

Note diagram shows tensile grip. The measurements of this study were conducted in 3 point bend.

SRF 2003

3 September '03

Sefferson Pab

Dynamic Mechanical Analysis (Contd.)

Temperature - Relaxation Mechanism Kinetics Magnitude - Proportional to Concentration

Peak Temperature = f(Frequency)

Comparison of peaks predicted from diffusion data for two frequencies to measurements.

Estimated Snoek Peak Temperatures (K) in Nb for Different Loading Frequencies

<u>Solute</u>	<u>0.1 Hz</u>	<u>1.0 Hz</u>	<u>10 Hz</u>
Н	50	53.5	58
С	477	511	550
Ν	494	528	567
0	397	426	459

Peak Magnitude = f(Concentration)

Comparison of the oxygen Snoek peak in two samples of Nb indicated a difference in the oxygen concentration

SRF 2003

Dynamic Mechanical Analysis (Contd.)

Example of other types of interactions and peaks

H-O Interaction Peak

A peak was found at a temperature between that expected for the H and O Snoek peaks. Previous investigators postulated this peak to be due to H-O interstitial interaction.

Estimated Snoek Peak Temperatures (K) in Nb for Different Loading Frequencies

<u>Solute</u>	<u>0.1 Hz</u>	<u>1.0 Hz</u>	<u>10 Hz</u>
Н	50	53.5	58
С	477	511	550
Ν	494	528	567
0	397	426	459

SRF 2003

3 September '03

Jefferson Pab

Dynamic Mechanical Analysis (Contd.)

Loss Modulus Peaks for Nb

Peak Ratios

Oxygen: P/K ≈ 1.94

Nitrogen: P/K ≈ 1.6

Carbon: P/K NA

SRF 2003

3 September '03

Jefferson Sab

Tensile Deformation and Stress Fluctuations During Plastic Flow

Jefferson Lab

SRF 2003

Distribution of Stress Fluctuations _ During Plastic Flow

Standard Deviations

Nb, P = 0.1427 MPa

Nb, K = 0.0907 MPa

Ratio P/K = 1.57

Loss Modulus Peak Ratios

Oxygen: P/K ≈ 1.94

Nitrogen: P/K ≈ 1.6

Carbon: P/K NA

Jefferson Lab

SRF 2003

Analysis of Periodicity of the Stress Fluctuations During Plastic Flow

SPD Peak

Nb, P = 2.49

Nb, K = 0.56

Ratio P/K = 4.44 (2.11)

Standard Deviations

Nb, P = 0.1427 MPa

Nb, K = 0.0907 MPa

Ratio P/K = 1.57

Loss Modulus Peak Ratios

Oxygen: P/K ≈ 1.94

Nitrogen: P/K ≈ 1.6

Carbon: P/K NA

Jefferson Lab

SRF 2003

2002 Hydrogen in Materials and Vacuum Systems Intl. Workshop

- . This International Meeting, the First of its Kind, was Jointly Sponsored by
 - . The Mid-Atlantic Chapter of the American Vacuum Society,
 - . The Old Dominion University (Physics Department),
 - . Deutsches Electronen Synchrotron (DESY),
 - . The College of William and Mary,
 - . Reference Metals Company Inc.,
 - . Tokyo Denkai Co., Ltd. (Japan),
 - . Wah Chang (USA) and
 - . The Jefferson Lab.
- . Success Lead to the Formation of International Hydrogen in Matter Symposia Board (ISOHIM): Chair Dr. Jim Miller, ANL; Co-Chair Dr. G. Myneni JLAB
- . Second International Symposium on Hydrogen in Matter 2005 Uppsala University, Sweden
- . AIP Published the Proceedings of the workshop as CP #671 in July 2003

High RRR Nb-Hydrogen Research Collaborations

JLAB – ODU Physics Hydrogen Interactions in Materials – Theory

. JLAB – UVa Physics H in Nb Grain Boundaries – SQUID Magnetic

Microscope

. JLAB – NIST H–PGAA–Neutron Scattering Studies of high RRR

Niobium

. JLAB – NIST Internal Friction Measurements of H and Interstitial

Content in High RRR Niobium

. JLAB – SUNY Albany Hydrogen Depth Profile with Nuclear Reactions & Oxide

Thickness in High RRR Niobium

. JLAB – DESY, Germany Thermal and Mechanical Properties of Niobium

With Heat Treatments – H Degassing Affects

. JLAB – FZK, Germany Extreme High Vacuum Science & Technology – H

. JLAB – William & Mary Hydrogen in Semiconductors

• JLAB-LANL-UVa – High RRR Niobium Microstructure – Tuning with H

Reference Metals – MOU

JLAB – Uppsala Univ. Fundamental Understanding of H-Matter Interactions

Jefferson Lab

Conclusions -

- . High purity niobium mechanical properties vary from batch to batch and are very sensitive to various treatments and handling
- . Elastic behavior of high purity niobium is normal and is unaffected by heat treatments
- . Hydrogen bulk content and depth profile studies are yielding interesting results
- . Internal Friction measurements are expected to provide quantitative interstitial concentrations
- . Stress-Strain curves may provide the high RRR Nb purity
- Fundamental hydrogen-matter interactions knowledge from various communities will enhance the understanding and improve the SRF Technology

References

- . High RRR Niobium Material Studies
- . Jlab-TN-02-001 Ganapati Myneni and Peter Kneisel
- . Requalification of Tokyo Denkai RRR Niobium
- . JLAB-TN-02-011 Ganapati Myneni, Peter Kneisel
- . Determination of Hydrogen in Niobium by Cold Neutron Prompt Gamma-Ray
- . Activation Analysis and Neutron Incoherent Scattering, R. L. Paul, H. H.
- . Chen-Mayer, and G. R. Myneni in Hydrogen in Materials and Vacuum
- . Systems AIP CP 671, Melville, New York, 2003, pp. 151-161
- . Elasto-Plastic Behavior of High RRR Niobium: Effects of Crystallographic
- . Texture, Microstructure and Hydrogen Concentration, G.R. Myneni and S.R. Agnew in
- . Hydrogen in Materials and Vacuum Systems, AIP CP 671, Melville, New
- . York, 2003, pp. 227-242
- . Variation of Mechanical Properties of High RRR And Reactor Grade Niobium
- . With Heat Treatments, Ganapati Myneni, H. Umezawa in Materiaux & Techniques, Vol
- . 7-8, 2003
 - Ultrasonic Velocity and Texture of High RRR Niobium,
- . S Agnew, F Zeng, G.R. Myneni in Materiaux & Techniques, Vol 7-8, 2003
- . Hydrogen Uptake by High Purity Niobium Studied by Nuclear Analytical
- . Methods Rick L. Paul, Heather H. Chen-Mayer, Ganapati Myneni William A. Lanford,
- and Richard E. Ricker in Materiaux & Techniques, Vol 7-8, 2003

SRF 2003