

Development of SC Intermediate-velocity Cavities for the U.S. RIA Project

Presented at the **11th Workshop on RF Superconductivity** Lubeck-Travemunde, Germany

September 10, 2003

Kenneth W. Shepard Physics Division

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

The U.S. RIA Project (see Stan Schriber's talk in the closing plenary session)

RIA Driver Linac: 400 kW, protons - uranium

Driver Linac Cavity Array (ANL updated baseline)

"Cavity-Walk" (voltage gain per cavity) for the Baseline RIA Driver Design

RIA Driver Linac Cavity Array (ANL Baseline Design)

Туре	Beta	Freq (MHz)	Length (cm)	Maximum RF E-Field	Number of Cavities
FORK	0.02	57.5	20	16	2
FORK	0.03	57.5	25	16	5
QWR	0.06	57.5	20	20	28
QWR	0.15	115	25	20	48
HWR	0.26	172.5	30	20	80
2 SPOKE	0.39	345	38	20	56
6-CELL	0.47	805	53	27.5	54
6-CELL	0.61	805	68	27.5	88
6-CELL	0.81	805	91	27.5	32
				Total # =	393

Intermediate-beta cavity development for RIA $0.2 < \beta < 0.8$

- ANL and MSU are independently developing designs for RIA (for MSU perspective see papers by Terry Grimm, et al. at this conference MoPO3, TuP14, TuPO8, ThP26, ThP35, and also Stan Schriber in FrO04)
- The ANL design is based on 805/14 MHz bunch
- The MSU design is based on a 805/10 MHz bunch
- Both designs require the development of intermediatevelocity superconducting cavities and support systems

JLAB 805 MHz 6-Cell β=0.61&0.81 Cavities

Beta 0.47 6-cell Elliptical-cell (JLAB/MSU)

Lilje included early results on a bare-niobium β =0.47 six-cell.

Determining the mechanical and micropohonics properties of a complete, jacketed cavity is the next task.

- The three types 6-cell elliptical-cell cavity seem well in hand. These cavities form the high-energy section of the RIA driver in the current baseline design for BOTH ANL and MSU
- Present plans at MSU call for a 322 MHz coaxial halfwave cavity for the lower portion of the intermediatevelocity section.
- Present plans at ANL call for a 172 Mz half-wave and either one or two types of 345 MHz multiple-cell spoke-loaded cavity.

MSU/NSCL 322 MHz, β=0.285, Half-wave resonator (paper MoP03)

Office of Science U.S. Department of Energy

At the last workshop, we saw that HPR gives a dramatic improvement in performance for TEM cavities

Excellent performance of drift-tube cavities at 4.2 K is consistent and repeatable when the cavity is kept clean (April 2001)

Intermediate-velocity cavities for RIA at ANL

QR _s =	71			
$\beta_{Geom} =$	0.393			
Eff. Length =	38.1 cm			
At 1 MV/m				
RF Energy =	151 mJ			
E _{peak} =	3.47 MV/m			
B _{peak} =	69 G			

58

0.26

30 cm

345 mJ

2.9 MV/m

78 G

172.5 MHz HWR

At 1 MV/m

 $QR_s =$

 $\beta_{\text{Geom}} =$

E_{peak} =

B_{peak} =

Eff. Length =

RF Energy =

345 MHz Double-Spoke

Pioneering Science and Technology

Prototype niobium β =0.26 half-wave and β =0.15 **QWR** near completion

Recent test results for the fully-jacketed, 345 MHz Double-spoke cavity

4.2 K Residual resistivity – 80-100 MHz Quarter-wave structures

4.2 K Residual Resistivity – 322-352 MHz Halfwave Class Structures

Elliptical-Cell or Triple-Spoke for the RIA Driver Linac?

Two triple-spoke cavities for $0.4 < \beta < 0.8$

Freq	Beta	Lngth	U	QRs	R/Q	Epk	Bpk
(MHz)	(geom)	(cm)	(mJ)	(ohm)	(ohm)	(MV/m)	(MV/m)
345	0.50	65	397	85.7	494	2.9	86
805	0.47	53	341	137	160	3.4	69
345	0.63	81	580	93	520	3.0	89
805	0.61	68	330	179	279	2.7	57

RIA Driver Linac Nb SC Cavity Array

Voltage gain per cavity vs. velocity for 345 MHz spoke cavity option

Comparison of Longitudinal Acceptance

Longitudinal and Transverse Acceptance

Acceptance (Norm.)	Triple-spoke	Elliptical-cell
Trans. (π·mm·mrad)	35	70
Long. (π·keV/u-nsec)	280	60

Refrigerator Heat Load: Triple-Spoke vs. Elliptical-cell

SNS Production β=0.6 Elliptical-cell at 2K

4.2 K Residual Resistivity – 322-352 MHz Halfwave Class Structures

Some parameters for two linac designs

Туре	Beta	Freq	Temp	Epeak	Volts/Cav	# Cav	RF Loss		
		(MHz)	K	MV/m	MV		at 4.2K		
	805/14 MHz Linac								
FORK	0.031	57.5	4.2	16	1.00	5	0.02		
QWR	0.061	57.5	4.2	20	1.35	28	0.2		
QWR	0.151	115.0	4.2	20	1.58	48	0.4		
HWR	0.263	172.5	4.2	25	2.58	83	3.1		
3SPOKE	0.500	345.0	4.2	27.50	6.23	69	6.7		
3SPOKE	0.620	345.0	4.2	27.50	7.49	96	11.9		
					Total	329	22 kW		
	805/10 MHz Linac								
QWR	0.041	80.5	4.2	16.5	0.55	18	0.1		
QWR	0.085	80.5	4.2	20	1.17	104	1.3		
HWR	0.285	322.0	4.2	25	1.54	208	4.1		
6 Cell	0.470	805.0	2.0	32.5	5.01	68	8.8		
6 Cell	0.610	805.0	2.0	32.5	8.18	64	9.7		
6 Cell	0.810	805.0	2.0	32.5	13.44	32	5.2		
					Total	494	29 kW		

If the triple-spoke cavity can be developed in time for RIA, we can:

- 1) Reduce number of cavities (by 12 cryomodules worth)
- 2) Operate at 4.2K, eliminate 2K helium refrigerator
- 3) Reduce refrigerator power requirement substantially
- 4) Increase acceptance / reduce beam loss
- 5) Increase proton energies
- 6) Improved mechanical stability

Conclusions

- Intermediate-velocity cavities are in a period of rapid development (not only for RIA – see work toward Eurisol at this workshop)
- Several viable design options for the RIA driver linac have been demonstrated
- Remaining work will focus on cost-performanceschedule optimization
- The time window for further development may be short, BUT present developments are exciting things are moving fast, so stay tuned!

