

11th Workshop on RF Superconductivity September 8-12, 2003

Travemünde/Lübeck, Germany

Status of the TTF FEL

Siegfried Schreiber, DESY

- Highlights from the TESLA Test Facility (TTF 1) Linac runs
- Contractional series of the se
- Status and Milestones
- 🙂 Summary

TESLA The TESLA Collabora

- Chasat present 3 projects
 TESLALC, TESLAX FEL and VUV FEL (TTF2)
 TESLA'LC is one of the competitors for the next HEP large accelerator facility.
- TESLA X-FEL is the core of a proposal for an European Laboratory of Excellence for fundamental and applied research with ultra-bright and coherent X-ray photons.
 VUV FEL (TTF2) will be the first user facility for VUV and soft X-ray coherent light experiments with impressive peak and average brilliance.
 It is also a test facility for further TESLA LC related R&D.

TESLA Test Facility Linac (TTF 1)

TTF/TESLA Accelerating Modules

C. Pagani et al, INFN LASA

- Three "generations" of cryomodule design, with increasing simplicity and decreasing costs
- Three 3rd generation modules assembled, 2 installed in TTF

Length	12 m	
# cavities	8	
# quad doublets	1	
Static losses	@ 2K	1.5 W
	@ 5K	8 W
	@ 50 K	70 W

Contraction Contractions Contractions Contractions Eight 9-cell TESLA acclerating structures and a quadrupole/steerer package

Example of improvements

"Finger Welded" Shields

Sliding Fixtures @ 2 K

Qualification tests in LASA

Experience from TTF 1 Operation

Contraction of the second seco

- is given by low Q, high field emission or quench but not by structural damage
- is not a hard limit, it results in higher cryogenic load, radiation, and darkcurrent
- The vector sum low level RF regulation has a "quench detection" to avoid chain quenches

Cavity performance progress

Progress mainly due to: improved welding and stricter Niobium quality control

Electro-polished 9-cell cavity Tests

Beam Experiments with Superstructures

Energy refilling with beam loading (4mA)

Weakly coupled cavities do accelerate TESLA bunch trains

 Dipole modes (<2.6 GHz) are suppressed better than specs
 Search for HOM's with modulated bunch trains

Principle of a SASE FEL

SASE Self Amplification of Spontaneous Emission

TTF 1 FEL has achieved Saturation

First Lasing: Phys. Rev. Lett. 85(2000)3825 Saturation: Phys. Rev. Lett. 88(2002)10482, The European Physical Journal D 20(2002)149

Beam Energy and FEL Wavelength

First TTF FEL Experiment: Ablation

Investigation of FEL beam induced damage of optical elements (optical coatings AI or Au, on Si wafers).

20 um

 $\lambda = 98 \text{ nm}, \text{ W} = 100 \text{ TW/cm}^2$

Institute of Physics of the Polish Academy of Sciences (IFPAS), Warszawa Courtesy J. Krzywinski Surface of photoresist PMMA (polymethyl methacrylate) after multiple irradiation by SASE FEL pulses

 $\lambda = 85 \text{ nm}$

The Cluster Experiment

Tuning the FEL Radiation Pulse Duration

Peak brilliance of the TTF 1 FEL

GAN: TTF Practiced Remote Operation

TTF @ DESY Photoinjector @ Fermilab PITZ @ Zeuthen

TTF 1 Operational Statistics

- Coperated 7 days per week, 24 hours per day
- 15,000 hours of beam time since 1997
- About 50 % of the time was allocated to FEL operation including a large percentage of user time.

TESLA Test Facility Linac (TTF 2)

Goal: FEL user facility from the VUV to the soft X-ray (6 nm) wavelength range

Photoinjector Test Stand at DESY Zeuthen

- 🙂 RF gun is commissioned
- 🙂 flat hat laser system installed
- measurement of beam properties under way

21 ps

TTF Hardware picture Gallery

Installation of modules into the TTF linac

TTF 2 Hardware Picture Gallery

stripline BPM

button **BPM**

quadrupole, sextupole

dipole, steerer

Siegfried Schreiber, DESY * Workshop on RF Superconductivity September 8-12, 2003, Travemünde/Lübeck, Germany

kicker

TTF 2 Hardware Picture Gallery

wire scanner

toroid

optical transition radiation (OTR) vacuum chamber with screen mover

OTR optical system

TTF2 Hardware Picture Gallery

Drawing of the Undulator Section

Bunch Length Measurement Example

transverse deflecting cavity: Cooperation SLAC/DESY

Layout of the Experimental Hall

Siegfried Schreiber, DESY * Workshop on RF Superconductivity September 8-12, 2003, Travemünde/Lübeck, Germany

27

TTF 2 Milestones for this and next Year

Summary

- TTF 1 run successfully ended Nov 18, 2002 after 15,000 h of beam time
 - several TESLA superconducting accelerating structures tested, with and without full beam loading, incl. higher order modes experiments
 - SASE FEL runs: lasing and saturation in the VUV achieved
 - two successful FEL experiments
- TTF 1 is being extended to 1 GeV with the goal of a user facility from the VUV to the soft X-ray wavelengths
 - RF test of three installed modules ongoing
 - installation of the injector this year
 - remaining installation in parallel to injector runs
 - first beam into the dump expected mid 2004

TTF 2 Laser Upgrade

- Together with Max-Born-Institute, Berlin (I. Will et al.)
- Upgrade is being tested at PITZ (DESY Zeuthen)

Parameters of the TTF 1 FEL

FEL	Wavelength	80 – 120 nm
	2 nd harmonic	48.5 nm at 0.11 % intensity of fundamental
	Pulse energy at saturation	30 – 100 µJ
	Pulse duration	30 – 100 fs (fwhh)
	Peak power	1 GW
	Average power	Up to 5 mW
	Spectrum width	1 %
	Spot size	250 μm
	Angular divergence	260 µrad
	Peak brilliance	Up to 10 ²⁹ ph/(s mrad ² mm ² 0.1% bw)
	Average brilliance	Up to 10 ¹⁸ ph/(s mrad ² mm ² 0.1% bw)
Beam	Bunch charge	2.7 – 3.3 nC
	Peak beam current	1 – 1.5 kA
	Charge in radiative part of the beam	0.1 – 0.2 nC
	Duration of the radiative part of the beam	50 – 150 fs
	Normalized emittance	4 – 7 mm mrad (rms)