CEBAF-ER: Extending the Frontier of Energy Recovery at Jefferson Lab

Chris Tennant

(On behalf of the E02-102 Collaboration)

Center for Advanced Studies of Accelerators Jefferson Laboratory

11th Superconducting Radio Frequency Workshop Lübeck / Travemünde, Germany September 2003

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

efferson G

Introduction to Energy Recovery

- What is Energy Recovery?
 - It is the process by which the energy invested in accelerating a beam is returned to the RF cavities by decelerating the same beam (via proper path length of recirculation pass)
- Why use Energy Recovery?
 - Required RF power becomes nearly independent of beam current
 - Increases overall system efficiency
 - Reduces electron beam power to be disposed of at beam dumps by ratio of E_{final}/E_{iniect}
 - If beam energy is dumped below the neutron production threshold (13 MeV), requirements related to high average current beam dump designs are relaxed
- Why use SRF Technology?
 - Since RF power no longer depends on beam current, to establish cavity fields must overcome wall losses: for SRF cavities high Q's mean small wall losses

JLab FEL (Past and Present)

•

٠

 IR FEL Demo consistently and reliably energy recovered 50 MeV of 5 mA beam through a single cryomodule.

IR FEL upgrade is currently

At design, it will energy recover

145 MeV of 10 mA beam through

being commissioned.

3 cryomodules.

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Introduction to Energy Recovery (cont'd)

Ultimately, Energy Recovering Linacs (ERLs) promise efficiencies approaching those of storage rings, while maintaining beam quality characteristics of linacs: superior emittance and energy spread, and subpicosecond bunches.

Because of the advantages offered by ERLs, there are proposals world-wide for their application as

- i. Light sources
- ii. FĔLs
- iii. Electron cooling devices
- iv. Electron-Ion colliders

Thomas Jefferson National Accelerator Facility

ERL Landscape

In an effort to address the issues of energy recovering high energy beams, Jefferson Lab proposed a minimally invasive energy recovery experiment utilizing the CEBAF superconducting, recirculating, linear accelerator

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

efferson Pal

CEBAF Modifications

"1 Pass-Up / 1 Pass-Down" Operation

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

efferson C

al

Machine Optics

Measurements Performed

- In an effort to gain a quantitative understanding of the 6D phase space, the following measurements were taken:
 - Measuring the transverse emittance of the beam in the injector, in each Arc and immediately before being sent to the dump
 - To characterize the longitudinal phase space, the momentum spread was measured in each Arc
- Measure energy recovered beam profiles with a large dynamic range as a way to characterize halo
- Measured the RF's response to energy recovery

These measurements were performed with E_{ini} = 55 MeV and 20 MeV

(i.e. exercise final-to-injector energy ratios (E_{final} / E_{inj}) of 20:1 and 50:1)

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ellerson C

Emittance Measurements

- Transverse emittance in the injector and Arcs were performed using the standard method of using multiple optics and multiple wire scanners.
- Measuring the emittance of the energy recovered beam proved to be tricky since we had to make the measurements in the presence of <u>two</u>, co-propagating beams.

٠

- A single scanning quadrupole and downstream wire scanner scheme was used.
- The beam size squared at the wire scanner depends quadratically upon the quadrupole strength and from that the emittance can be extracted. That is,

$$\sigma_{measured}^{2} = \beta_{wire} \varepsilon = (1 + kL)^{2} (\beta_{quad} \varepsilon) - (1 + kL) (\alpha_{quad} \varepsilon) 2L + L^{2} (\gamma_{quad} \varepsilon)$$

Thomas Jefferson National Accelerator Facility

CEBAF-ER Experimental Run

Beam viewer near the exit of the South Linac

FPC Dipole Mode Driven Steering

- The same general concept applies to cavity HOM coupler induced transverse coupling you can use DC magnetic skew quad to locally correct one pass with the consequence of *doubling* the coupling in the other pass.
- Operated with a "Up Down" correction scheme (correct lowest energy beam in each linac).
- Future cavity designs should accommodate the influence of these and similar effects.

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Results of Emittance Measurements

Preliminary Conclusions

- Emittance is degraded by passage through linacs
 - FPC dipole head-tail steering (order Δε~1mm-mrad/pass)
 - HOM coupler induced coupling
- The process of energy recovery does not contribute to the emittance degradation since the emittance of the recirculating pass is consistent with the accelerating pass.

- Data for E_{inj} = 55 MeV is consistent with E_{inj} = 20 MeV results *except* for Arc 2 emittance...
- This data point is under investigation and plans are being made to redo measurement

Beam Profiles of ER Beam

- Increase dynamic range of beam profile measurements to detect particles outside the Gaussian core ultimately this will aid in the measurement of beam loss
- Beam profiles (55 MeV, 1μA beam) measured with a wire scanner and 3 downstream photomultiplier tubes (PMTs)
- Each profile (X and Y) is fit with a function of the form:

F = Gaussian + Background

 An upper limit of halo is calculated from the ratio

 For the transverse profiles the ratio is 1×10⁻⁴

lefferson C

Thomas Jefferson National Accelerator Facility

Beam Profiles of ER Beam (cont'd)

- Beam profiles (20 MeV, 1μ A beam) measured with a wire scanner and 3 downstream PMTs
- The Y-profile shows a good ٠ Gaussian fit over 6 orders of dynamic range. 0 The width of the X-profile is X-profile ٠ scaled by $(\Delta E/E)$ from the **D**• • E_{ini} = 55 MeV case. Width of X-profile could ٠ potentially explain the increased scraping observed at $E_{ini} = 20 \text{ MeV}.$ Y-profile H-C H

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

⁽courtesy A. Freyberger)

RF Response to Energy Recovery

• Gradient modulator drive signals with and without energy recovery in response to 250 μsec beam pulse entering the RF cavity (SL20 Cavity 8)

Conclusions

Achievements

- Demonstrated the feasibility of energy recovering a high energy (1 GeV) beam through a large (~1 km circumference), superconducting (39 cryomodules) machine.
- 80 μ A of CW beam accelerated to 1055 MeV and energy recovered at 55 MeV.
- 1 µA of CW beam, accelerated to 1020 MeV and energy recovered at 20 MeV, was steered to the ER dump.
- Tested the dynamic range on system performance by demonstrating high finalto-injector energy ratios (E_{final}/E_{ini}) of 20:1 and 50:1.

Future Activities

efferson C

 Important accelerator physics and technology challenges are topics of vigorous research at JLab. They will also be addressed experimentally by a number of prototypes, such as the 10 mA JLab FEL, 100 mA FEL upgrade and continued activities with CEBAF-ER.

Thomas Jefferson National Accelerator Facility

E02-102 Collaboration

I would like to acknowledge and thank the members of the CEBAF-ER collaboration:

Kevin Beard Alex Bogacz Yu-Chiu Chao Swapan Chattopadhyay David Douglas Arne Freyberger Andrew Hutton Lia Merminga Mike Tiefenback Hiro Toyokawa

Thomas Jefferson National Accelerator Facility

RF Response to Energy Recovery

• Gradient modulator drive signals with and without energy recovery in response to 250 μsec beam pulse entering the RF cavity (SL20 Cavity 8)

