High gradients in multi-cell cavities Lutz Lilje DESY –MPY-9.9.2003

- A look into the past
- Cavity shape, material and preparation
- Cavity limitations
- SRF projects using elliptical multi-cell cavities
- Recent cavity performance tests
 - e.g. high power performance test of an electropolished TESLA cavity
- Outlook

TESLA

Disclaimer

- This is a compilation of data available since the last SRF workshop in Tsukuba.
 - Focus on multi-cell cavity tests
 - Try to watch out for specialties in treatment, manufacturing etc.
 - If you think your tested multi-cell is missing, please tell me.
- Overview on new projects on friday
- The basics of SRF are described elsewhere:
 - P. Schmüser Monday Tutorial (MoT01)
 - H. Padamsee et al., RF superconductivity for accelerators, Wiley
 - B. Aune et al., Superconducting TESLA cavities, PRST AB, Vol. 3, 092001 (2000)

Lutz Lilje DESY

TESLA

Thank you!

- For providing me with data, plots and information
 - Peter Kneisel
 - John Mammosser
 - Hans Weise
 - Detlef Reschke
- For the preparation of the EP of TESLA nine-cells at KEK/Nomura Plating
 - Eiji Kako
 - Kenji Saito
- For helping with the high power test
 - C. Albrecht, V. Ayvazyan, A. Bosotti, J. Eschke , A. Goessel, D. Kostin, R. Lange, A. Matheisen, W.-D- Möller, R. Paparella, H.-B. Peters , P. Sekalski, S. Simrock, DESY groups: MVP,MKS, MHF-SL

Lutz Lilje DESY

A look into the past

- At the time of the SRF80 (KfK 3019, November 1980) Multipacting (MP) was one severe limitation for cylindrical and muffin-tin cavities.
- But one spherical three-cell cavity has shown good performance (Parodi et al., IEEE Trans. on Mag., Vol. MAG-15,1,June 1977)
 - 'Genoa still looks very favourable' wrote A. Citron, referring to the shape of a C-band three-cell cavity
 - 'The [..] geometrical approach to suppressing multipacting is paradoxically to round out the outer wall rather than to make the corners sharper.' C.M. Lyneis
 - Simulations (Klein and Proch, Proc.Conf. on Future Possibilities for Electron Accelerators, 1979) could explain the reduced sensitivity to onepoint-MP

Accelerating gradient vs. frequency

from A. Citron, Compilation of experimental results and operational experience First Workshop on RF Superconductivity, Karlsruhe, Germany, 1980

> C-band Structure Genoa, about 1980 the first spherical geometry realized because of easier manufacturing

Elliptical multi-cell cavities

- Since this discovery the SRF community concentrated on this shape for beta=1 applications and is pursuing many different projects
 - high current storage rings
 - TESLA linear collider
 - synchrotron light sources
 - XFEL Driver Linacs
 - CW Linacs
- More recently, this cavity shape is becoming more attractive also for 0,47<beta<1
 - Protons (SNS,KEK/Jaeri, XADS/Eurisol, APT/AAA, Trasco)
 - Ions (RIA/MSU)

ESL

Material

- For the time being, gradients above 10 MV/m in multi-cell cavities can reliably achieved only with bulk niobium cavities (despite the success of the LEP film cavities)
- Improved niobium material control has led to a significant improvement in niobium sheet quality and therefore cavity performance
 - RRR=200-300(400) is standard
 - e.g. eddy current scanning
- Typically high temperature treatments for stress annealing, hydrogen degassing (600-800°C) and in some cases for postpurification (>1000°C with getter materials) are part of the fabrication process
- Still, some effects like the 'Q-slope at high gradients' still need further investigation (see Posters and B. Visentin)

Preparation of niobium surfaces

- Typically 100-200 µm of damage layer are removed to obtain high gradients
 - etching is still the most commonly used method
 - electropolishing due to the impressive results at KEK on single-cells – becomes more and more popular (for good reasons – see below)
- One major limitation of cavities is still field emission:
 - High pressure rinsing with ultrapure water is a necessity
 - Dust-free assembly with quality control is needed

ESL

Operational issues / Auxiliaries

- A multi-cell cavity needs several interfaces to the outside:
 - He Tanks, mechanical stiffness
 - RF Couplers for cavities are critical elements
 - larger power handling capability
 - heat conductivity etc.
 - B. Rusnak tutorial this evening (TuT01)
 - HOM dampers
 - guarantee beam quality
 - Tuners for frequency adjustment
 - e.g. Lorentz force detuning

Lutz Lilje DESY

Available data

Lutz Lilje DESY

- Sneak Preview: See detailed report (J. Mammosser WeO01) and posters (e.g. TuP31,TuP32,TuP33)
- Basic preparation: 600°C firing, etching
- 805 MHz Medium Beta (0,61)
 - Vertical test results show that the design goal of 10 MV/m is routinely reached with some safety margin (best 17MV/m)
 - Currently the first medium beta modules are under test and show good performance: 15 MV/m
- 805 MHz High beta (0,81)
 - One cavity reached 20 MV/m after standard etch...
 - ... and 22 MV/m with higher Q after electropolishing
 - Specification has been increased from 12,5 to 15,5 MV/m

Lutz Lilje DESY

TESLA

SNS/JLab

EP cabinet

SNS

KEK/JAERI: J-PARC

- Old design uses 600 MHz, five-cells

 achieved 40 MV/m E_{peak}, ~11MV/m E_{acc}
- New ADS design will use 972 MHz
 - under design and manufacturing
 - beta=0,725
 - nine-cells

Lutz Lilje DESY

- gradient goal: E_{peak} =30 MV/m, E_{acc} =10MV/m

ESL

JAERI/KEK Joint Project

Fig. 1 600MHz 5-cell cavity (β =0.604)

Table 1 Design parameters for cavity	
Resonant Frequency, [MHz]	600
E_{peak}/E_{acc}	3.45
H _{peak} /E _{acc} , [Oe/(MV/m)]	72.28
R/Q, [Ω]	154
Geometrical factor, $[\Omega]$	166

Lutz Lilje DESY

TESLA

EURISOL/ XADS

- 700 MHz, beta=0,65
- five-cell prototype
 - no stiffening
 - coupler ports
 - copper brazed stainless flanges
- inside BCP only

ESL

EURISOL/XADS

RIA/MSU

- 805 GHz
- very low beta=0,47
- 1st prototype six-cell:
 - no stiffening rings
 - no coupler ports
 - etch, 600°C for 10 hours
- 2nd prototype – etch, no firing
- MSU Poster (MoP03)
- RIA talk (WeO08)

E_p/E_{acc}	3.41	
$B_p/E_{acc} [mT/(MV/m)]$	6.92	
R/Q [Ω]	160	
G [Ω]	136.7	
Q _{BCS} @ 2 K (10 ⁹)	21.2	
k [%]	1.5	
f [MHz]	805.006	
Field flatness [%]	1.8	

Lutz Lilje DESY

Jlab Upgrade/FEL cavities

- A lot of activity on the 1500 MHz besides SNS
 - development of different cavity shapes (MoP17)
 - seven-cells
 - Original Cornell (OC) shape achieved 20 MV/m
 - High gradient (HG) shape achieved 20 MV/m
 - Low loss (LL) single-cell with very good performance: 87MV/m E_{peak}
 - usually etching, EP in some cases
 - work on superstructures

Lutz Lilje DESY

TESLA

TESLA

- 1,3 GHz nine-cells, beta=1
 - focus on the last cavity production
 - etching (BCP), no 'In-Situ' baking
 - titanisation at 1400°C
 - electropolishing (in collaboration with KEK) and baking
 - vertical test results
 - horizontal high power test

TESLA: Electropolished nine-cells

- Electropolishing has been used on several single-cell cavities and nine-cell cavities
 - explored first at KEK (with Nomura Plating) on single-cells resulting in accelerating gradients up to 40 MV/m (1998)
 - collaboration of CEA-CERN-DESY reproduced these results (2000-2002)
 - nine-cells were electropolished in collaboration of KEK and DESY (2001-2002)
 - four cavities yielded gradients of 35 MV/m in low power cw tests
- Installation of high power coupler etc. and final high pressure rinse in DESY clean room
- Experimental setup for fast active tuning introduced

Lutz Lilje DESY

TESLA

Results of Vertical Test (last Production):

- 6 out of 9 nine-cell cavities with $E_{acc} \ge 30 MV/m$
- One cavity with 800°C only achieved 35 MV/m
- 2 cavities show early and strong field emission despite high pressure rinsing
- Preliminary: From T-maps done so far indicate that the quenches are not located at the equator

Vertical test "Statistics" on EP-cavities (last production only)

- Heat treatment at 1400°C vs. Heat treatment at 800°C only
- bad 800°C cavities are field emission loaded

Vertical test "Statistics" on EP-cavities - limitation

Overview on the high power test of an EP nine-cell

- Objectives of endurance test of the cavity
 - operate at maximum gradient for long time at 5 Hz, 500us fill, 800 us flat-top
 - demonstrate active detuning compensation using piezos
- Coupler and cavity processing went smoothly: 130 + 38 hours
 - heating of the coupler (standard in CHECHIA)
- Cavity has shown multipacting
 - resonant electron emission results in an avalanche
 - Xray emission at power levels corresponding to 20 MV/m disappeared after processing for a few hours (see below)
 - barrier is soft:
 - when the cavity is kept below some 100 K no new processing necessary
 - after warmup very short processing is needed (some minutes)
- Cavity performance measurements
 - 35 MV/m at 7*10⁹ stable, comparable to continuous wave test
 - max. gradient >36 MV/m
 - field emission observable only above 35 MV/m

Lutz Lilje DESY

High Power Test of an Electropolished nine-cell cavity

Some statistics on the test

- Test running 7.3.2003 14.8.2003
 - test took about 160 days (exact 3848 hours)
 - Scheduled cryo shutdown about 600 hours
 - warm-ups: 2x300 K, 4-5 times around 100 K
- Processing took about 165 hours
 - coupler 130 hours
 - cavity 35 hours

- RF operation of the coupler
 - cavity off-resonance and not at 2 K
 - power between 150 600 kW
 - 5 Hz operation very smooth
 - 10 Hz causes heating of the warm ceramics
 - Total time RF on ~ 2400 hours
- RF operation of the cavity
 - 1100 hours at around 35 +/-1 MV/m
 - ~110 hours without interruption
 - 57 hours at 36 MV/m +
 - most of this is feed-forward operation
- Piezo compensation
 - about 700 hours

Lutz Lilje DESY

Operational Experience at high gradient

- Cavity and coupler did not cause a single event
- Of course we had cavity quenches (20-30) or coupler breakdowns (10-20), but they were caused by
 - Klystron/Pre-amp power jumps
 - LLRF problems
- No degradations were observed
 - As expected the quality factor of the cavity did not change due to these quenches
 - The breakdowns did not degrade the coupler

ESL

RF signals at 35 MV/m

Summary

- A lot of data is available
- Where do we stand at SRF 2003 as compared to SRF 1980?

ESL

Accelerating gradients in multi-cell cavities

Electric peak field in multi-cell cavities

Magnetic peak field in multi-cell cavities

Summary

- Where do we stand at SRF 2003 as compared to SRF 1980?
 - E_{acc} upto 35 MV/m, Typical 15-25MV/m
 - electropolishing + baking is very promising
 - one cavity without titanisation at 35 MV/m
 - Typical E_{peak} around 40-50 MV/m
 - several different cavity from several projects
 - mostly etched cavities
 - Typical B_{peak} around 80-120 mT
 - several different projects
 - mostly etched cavities
 - Titanisation is not standard

Lutz Lilje DESY

Conclusion

- Proof-of existence for TESLA-800:
 - Nine-cell cavity in high power test at 35MV/m with acceptable cryogenic losses and very low field emission (only above 36 MV/m)
 - Shown stable operation at 35 MV/m for more than 1000 hours with feed forward only
 - No degradation seen in neither the coupler nor the cavity
 - Shown Piezo compensation of Lorentz force detuning is stable (more than 700 hours)
 - Non-titanified cavity at 35 MV/m in vertical test
- Several projects using standard etch as preparation yield reproducible cavity results
 - E_{acc} upto 35 MV/m, typical 15-25 MV/m
 - Typical E_{peak} around 40-50 MV/m
 - Typical B_{peak} around 80-120 mT
- → Superconducting RF is a promising *and* a mature technology at the same time !!!

Lutz Lilje DESY

TESLA