

Application of Low and High T_c Superconductors in Magnets and Power Applications

René Flükiger

Dept. Physics Condensed Matter (DPMC)

University of Geneva

Geneva, Switzerland

Outline

- HTS and LTC Materials
- Power Cables
- MRI: Magnetic Resonance Imaging
- Fault Current Limiters
- Motors, Generators, Transformers
- Very high field magnets, NMR magnets
- Summary

Present Situation of High Current Superconductor Applications

So far the applications have been concentrated on the use of Low Temperature Superconductors (LTS), both in research areas and industrial application areas:

- magnetic resonance imaging (MRI)
- NMR spectrometers
- magnetic separators
- magnetic energy storage systems (SMES) with small capacity

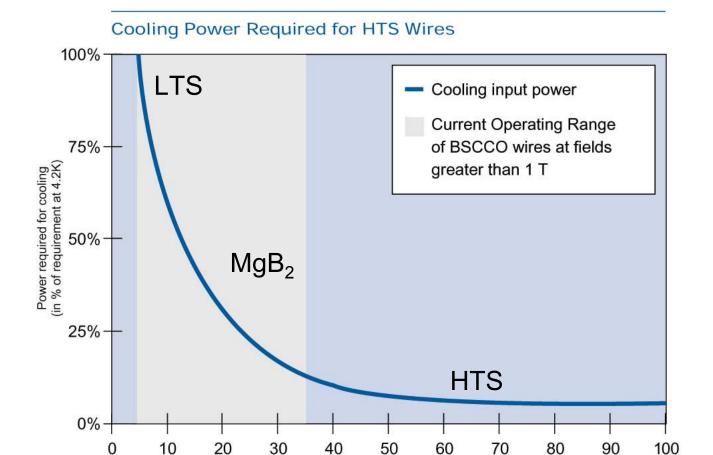
General prospects for the future of high current superconductor applications

Potential of HTS Superconductors will open up further application areas, e.g. electric power engineering.

It will probably also increase the market for already existing application areas of superconductors.

Time frame for implementation: will strongly depend on developments in the area of conductors and cryogenics

HTS Materials for Applications

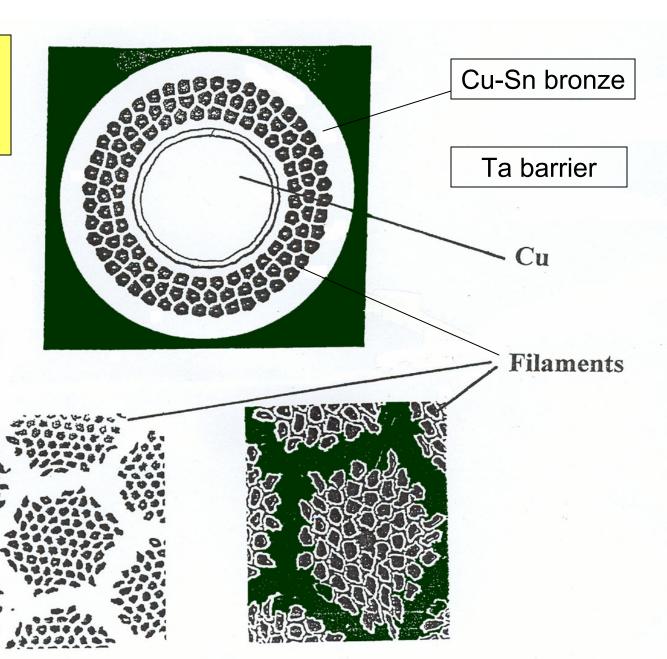

Production level	Material	$T_{c}(K)$	
Industrial	Bi,Pb(2223)	110	
	Bi(2212)	92	
Pre-industrial	Y(123), R.E.(123)	92-94	

Low T_c materials

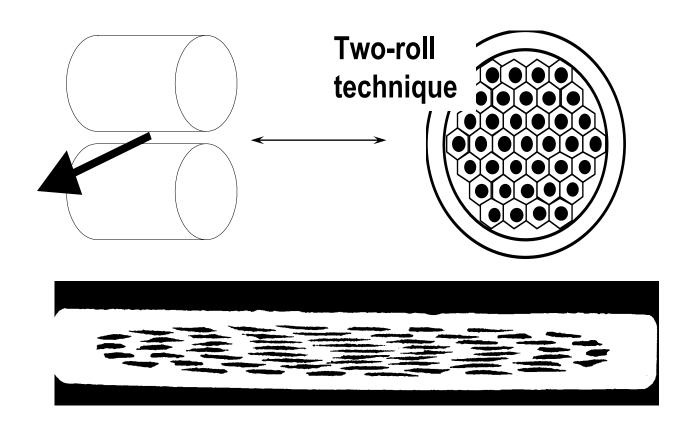
Industrial	NbTi	10
Industrial	Nb ₃ Sn	18
Pre-industrial	MgB_2	39

General status of HTS conductors

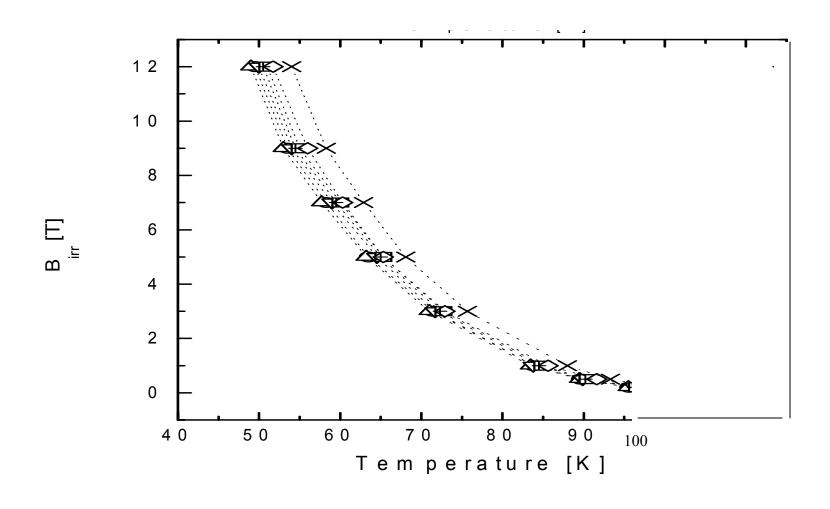
- Multifilamentary tape conductors: Bi-Sr-Ca-Cu-O developed up to industrial state. Their properties are reasonable for different use, but prizes are still high
- Coated tape conductors:
 Y-Ba-Cu-O
 offer superior properties, but very early state of the art, in spite of large development effort
- Recently discovered superconductor: MgB₂
 might gain niche applications, if further developments will be successful.

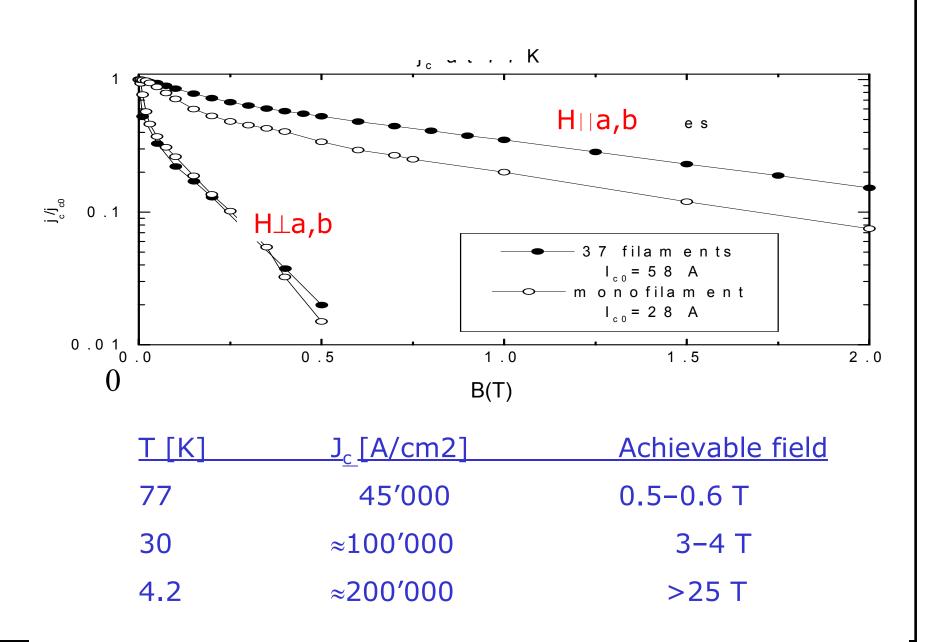


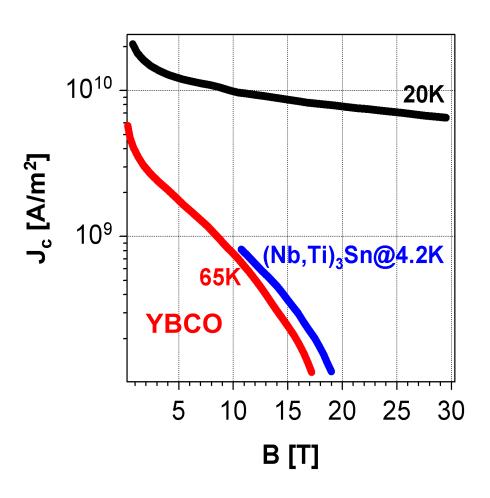
The ideal power required for refrigeration for HTS applications at 35 K is less than 10% of that required for low-temperature superconductivity applications at 4.2 K. Actual power requirements will vary depending on cooling scheme chosen and system efficiency.


Temperature (K)

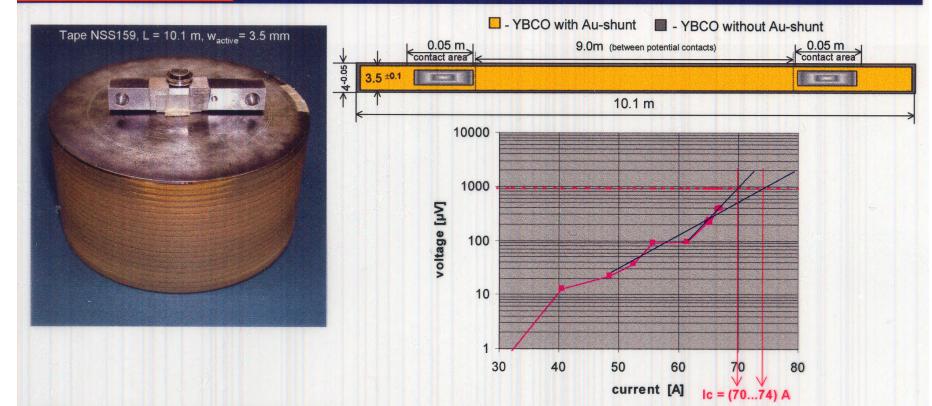
Nb₃Sn wires


Bronze route


Bi,Pb(2223) multifilamentary tape


Bi,Pb(2223) Tapes Temperature dependence of J_c

Critical current density of Bi(2223) tapes : Anisotropy

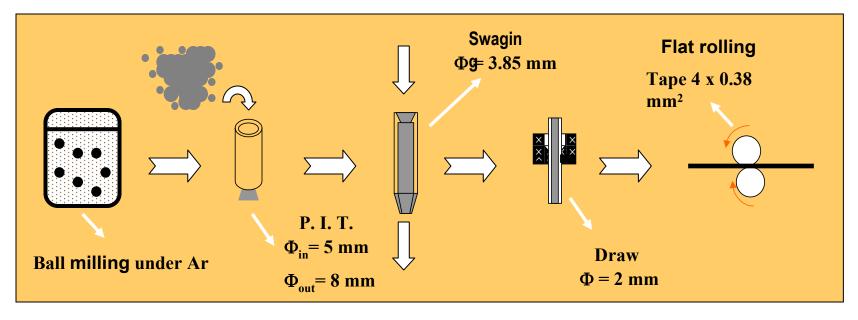

Comparison of J_c -B- I properties: YBCO, (Nb,Ti)₃Sn

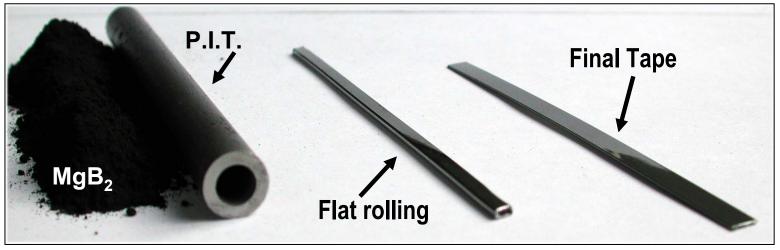
University Göttingen H. Freyhardt

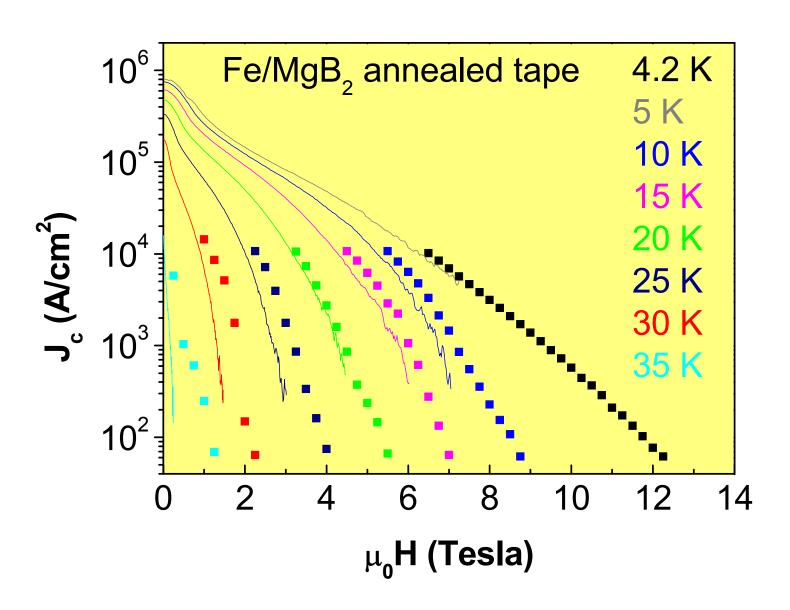
Coated Conductors: Long YBCO coated SS tapes

March 2002

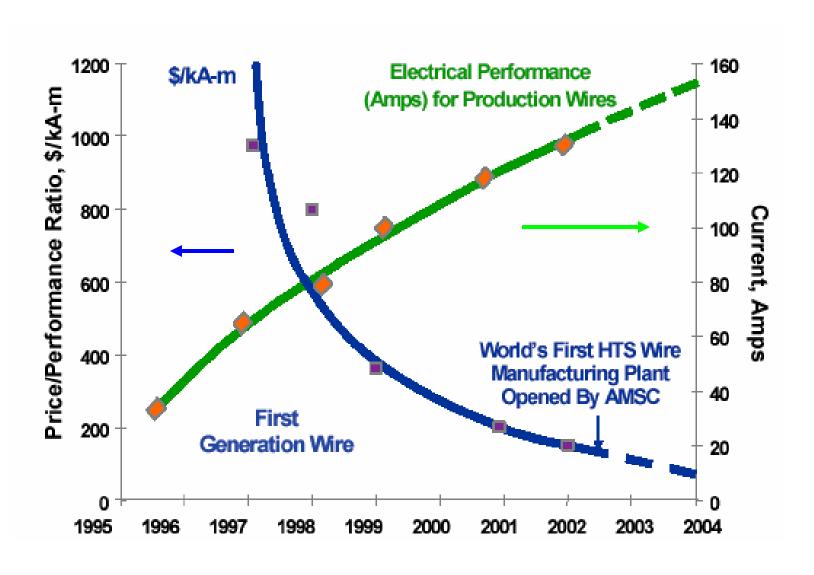
- SS tape (0.1 mm) // IBAD-YSZ (1.3 μm) // CeO₂ (<0.1 μm) // YBCO (1.1 μm)
- Coated Conductor: 10 m long, 4mm wide, with 3.5mm-wide YBCO film
- Critical current, I_c, and current density J_c:


 $I_{c,min} = 70 \text{ A } \& J_{c,min} = 1.82 \text{ MA/cm}^2$, $J_{c,max} = 3.3 \text{ MA/cm}^2 \& Ic/w = 200 \text{ A/cm}$ (77K, SF)


MgB₂ Tapes and Wires


Université de Genève

Preparation of MgB₂ Tapes



Critical current densities of Fe/MgB₂ tapes

First Generation HTS:Bi,Pb(2223) Price/Performance ratio of multifilamentary wires

(Data from American Superconductors)

Costs of Superconducting Wires

```
    Bi(2223): HTS Conductors
```

200 \$/kA.m at 0T/ 77 K

- 150 \$/kA.m at 25T/ 4 K

Goal: 30 - 50 \$/kA.m at 0T/ 77 K

Conditions at **OT/77K** correspond roughly to:

12T/ 4K, or

7T/ 20K

LTS Conductors

- MgB2 Tapes:

< 10 \$/kA.m at 20K/2T

– NbTi - Standard:

4 - 6 \$/kA.m at 8T/ 4K

– Nb₃Sn - Standard:

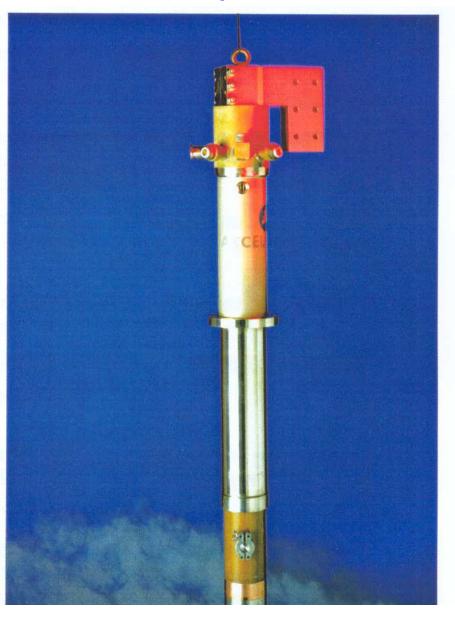
15 - 30 \$/kA.m at 12T/ 4K

75 - 150 \$/kA.m at 21T/ 2 K

Current Leads

American Superconductors

13 kA HTS Current Leads for LHC, CERN


Features

- Bulk BSCCO material at the lower stage
- Upper stage with helium gas heat exchanger
- High thermal runaway stability after loss of coolant
- Vacuum-insulated envelope

Parameter list 13 kA Current Lead

(quench stability)

Rated current	13 000 A
Heat load to liquid helium	1.5 W @ 13 kA 1.0 W @ 0 A
Contact resistance	2 nΩ @ 4 K 20 nΩ @ 50 K
Time constant of current decay after detection of a quench	120 s

Superconducting Cables

Foreseeable "near term" applications with the HTS conductors developed so far

- Power transmission cables, using Bi(2223) at ~ 65 K
- Later on, YBCO at 77 K is also envisaged

S.C. Power Transmission Cable Projects

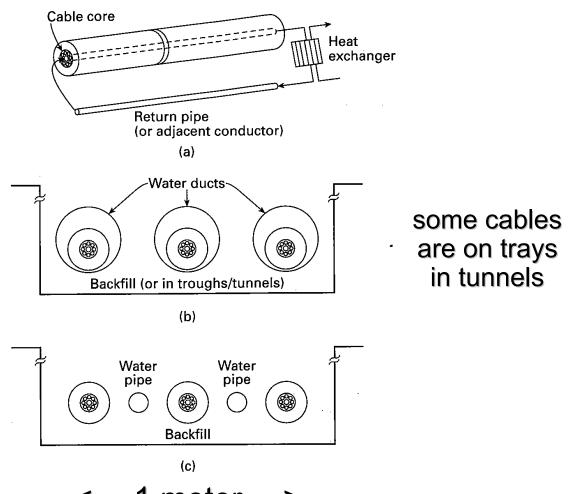
recently completed or running

- Sumitomo Electric + TEPCO: 66 kV/114 MVA, 3-phase cold dielectric, 100 m, One year test operation at CRIEPI, completed June 2002
- Southwire/USA:12,4 kV/26 MVA, 3 single phases, 30 m,cold dielelectric, in operation now since 2001, supplying the manufacturing complex in Carrolton in automated mode
- NKT/Denmark: 30 kV/104 MVA 3 single phases, 30 m, warm dielectric, in operation since 5/2001 supplying the Amager area of Copenhagen
- Pirelli/USA:24 kV/100MVA, 3 single phase, 120 m, warm dielectric, two phase have vacuum leaks, thus only one can be tested (in 2003).

S.C. Power Transmission Cable Projects

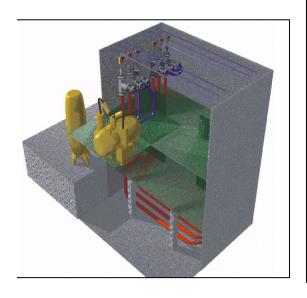
planned or under construction

- Super ACE/Japan: 66 kV/ ~ 100 MVA, 3 single phases, cold dielectric, 500 m, under construction for operation in 2003/04, Bi-2223
- •El./Japan: 34,5 kV, 3-phases, cold dielectric, 350 m, for Niagara Mohawk distribution system in Albany, Bi-2223


30 m YBCO cable sections are planned

Project has started (25 Mio. \$), operation is scheduled for 2005

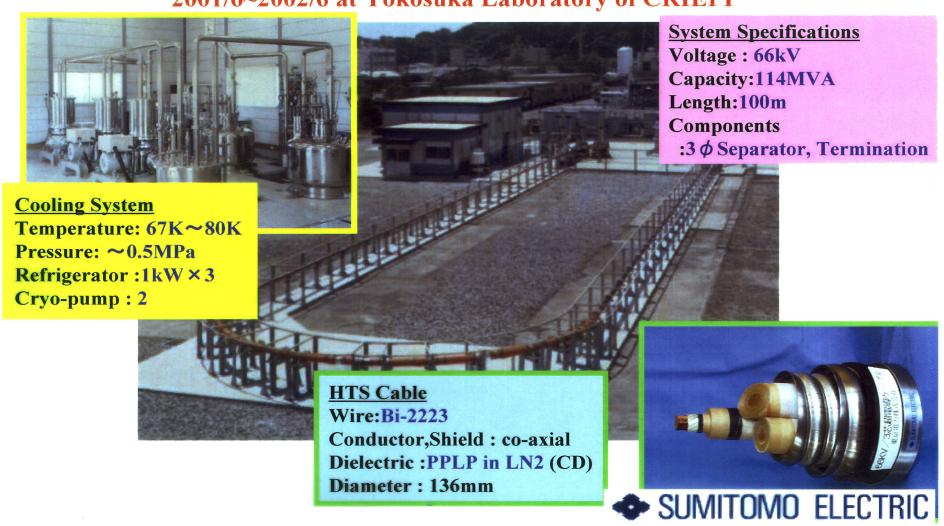
- ULTERA (NKT + Southwire): for American Electric Power Company at Ohio, design started, completion of construction planned for 2005
- InnoPower/Yunnan/China: 30m demonstrator scheduled for 2002-2004.
- Condumex/Mexico: 30m demonstrator for 2003-2005.
- KEPCO/Korea: 100m demonstrator, planned.


CONVENTIONAL UNDERGROUND CABLE REQUIRES SPACE UNDER THE STREET

<--- 1 meter --->
some cables are in trenches
cooling may be required

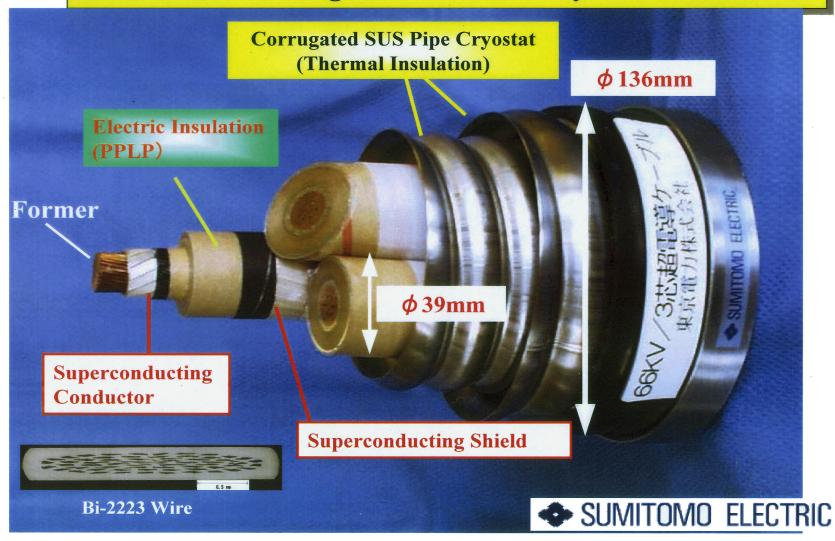
Engineers want FLEXIBLE CABLES

- Enables transport on cable drums
- Enables installation in cramped places



DTU-NST cable installed at Copenhagen Light & Power's Lyngby Station

Field Test of Commercial Model HTS Cable System (TEPCO, CRIEPI, SEI)


2001/6~2002/6 at Yokosuka Laboratory of CRIEPI

100m-114MVA-1000A / C3-PO Cable

Cold Dielectric Designed 3-Core in a Cryostat Power Cable

Magnetic Resonance Imaging

Benefits of MRI

MRI largest existing application of superconductors

- * Increase in medical diagnostic ability
- * Elimination of harmful X-ray examinations
- * Greatly reduced need for exploratory surgery
- * Very precise diagnostics and location information
- → reduced number of interventions
- → reducing the length of hospital stays
- → reduced degree of discomfort suffered by patients

Largest obstacle for MRI: capital cost of equipment

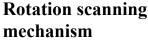
Open MRI using Bi(2223) Tape

- Oxford Instruments / Siemens
- HTS pancake coils can be manufactured at a size suitable for MRI
- MRI suitable magnetic field:
 0.2 T, +/- 20ppm over a 36 cm sphere
- Direct cooling by refrigerator,
 - without the use of cryogens,

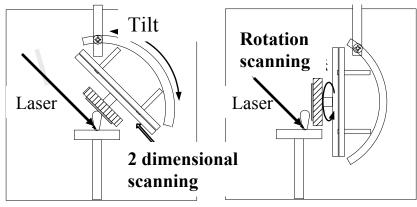
Fault Current Limiters

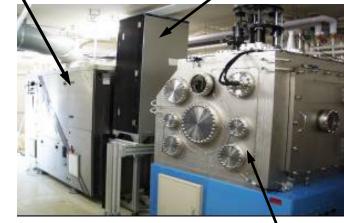
Superconducting Fault Current Limiters

European Development


Company	Country	Type	Data	Material	Remarks
Siemens	Germany	Resistive	100 kVA / 97 1 MVA / 00	YBCO film	tested tested
ABB	Switzerland	Resistive	1.6 MVA / 00 6.4 MVA / 01 10 MVA / 03	Bi(2212) thick film	tested tested ?
Schneider 1)	France	Resistive Hybrid	400 kVA / 00 17 MVA / 02	YBCO bulk	EU -project "BYFAULT" terminated 2002
Alcatel 2)	France	Resistive	400 kVA / 01	Bi(2212) bulk & YBCO tape conductor	Brite EuRam project "SUPERPOLI" completed 2002
ACCEL 3)	Cermany	Resistive	90 kVA /01 0.4 MVA /02 10 MVA / 03	Bi(2212) bulk YBCO bulk	tested tested under construction

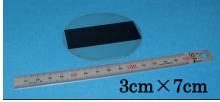
¹⁾ Diopma, REE, ANTEC, HITEC, CNRS Grenoble, ICMAB Barcelona, CIEMAT, Forschungszentrum Karlsruhe, Iberdrola

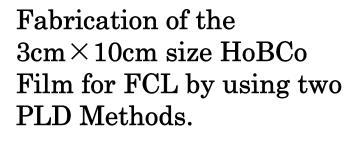

- 2) Nexans SuperConductors, Laborelec, ZFW Göttingen, TUT Tampere
- 3) ACCEL; RWE, E.ON, NexansSC, ATZ, EUS, ACCESS, FZK

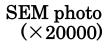

Large-area SC thin film for FCL Uniformity of Jc distribution

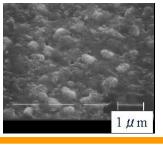
Two dimensional scanning mechanism

~1kJ Pulse Laser Beam Forming Device




Two dimensional substrate


Rotating substrate

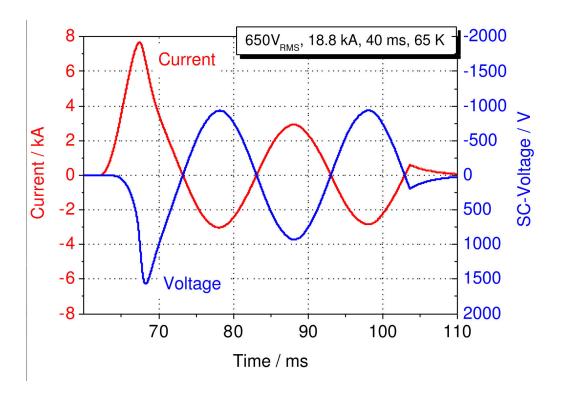


Sumitomo Elec. Inc.

Thin films based FCL

Siemens YBCO/Au on 4" Al_2O_3 wafer 1MW (330kVA per phase)

Bulk HTS modules of the 10 kV/10 MVA FCL



- MCP-BSCCO2212 bifilar coil
 - Outer diameter:
 - ~ 50 mm
 - SC length:
 - 5.4 m
 - SC cross section:
 - 0.24 cm2
 - Critical current (65K):
 - 850 A

- SC cross section:
 - 1.1 m
- SC length:
 - 0.48 cm2
 - » Adelwitz Technologiezentrum

Fault current of 10 kA reduced to 6.6 kA

- Voltage 650 VRMS
- Current 600ARMS
- Fault limitation 40 ms
- Temperature 65 K
- RT-resistance 360 mW
- Electrical field 0.56 V/cm
- lp/ln ~ 9.

Results of three module test

Superconducting Motors


USA:

DOE / SPI
 AMSC and Reliance Electric / Rockwell:
 1000 & 5000 PS motor

US Navy
 AMSC: 5 MW propulsion motor
 Alsthow Power /UK: stator

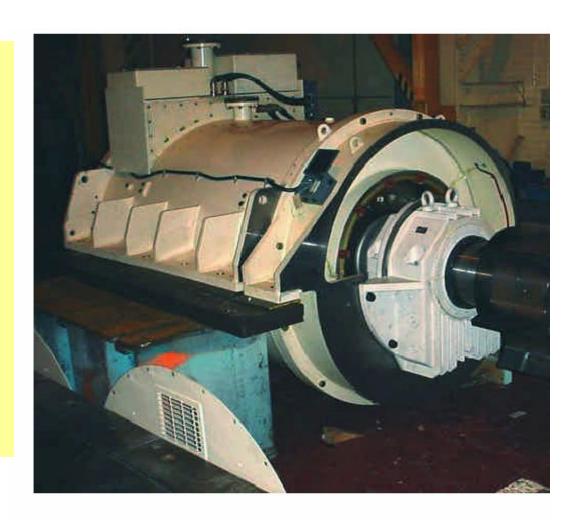
USA test system for ship propulsion motor

AMSC's 5MW/230rpm HTS Ship Propulsion Motor on Schedule for Summer 2003 Testing

5MW Rotor Assembly with Exciter

Courtesy: American Superconductors

5 MW, 230 RPM HTS Ship Propulsion Motor


Factory Testing Undergoing

Designed and built under Naval Research (ONR) contract

AMSC SuperMachines will deliver the 5 MW, 230 rpm motor Integrated with a commercial Variable Frequency Drive (ALSTOM VDM 5000

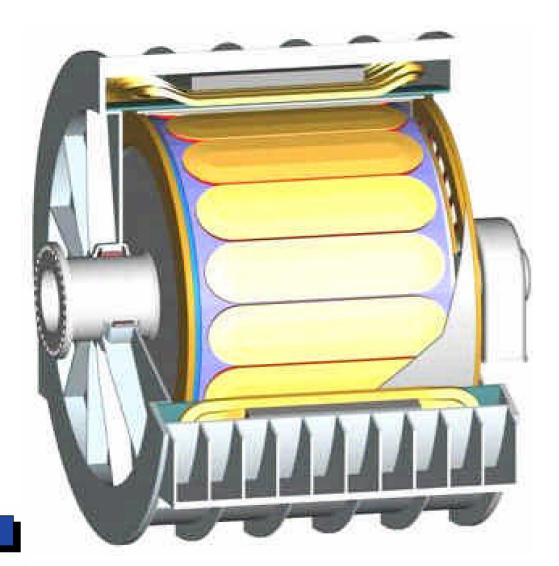
Component test bed for the ONR 36.5MW ship propulsion motor

Motor is undergoing factory testing in ALSTOM, Rugby Will be delivered to ONR by July 2003

Courtesy: American Superconductors

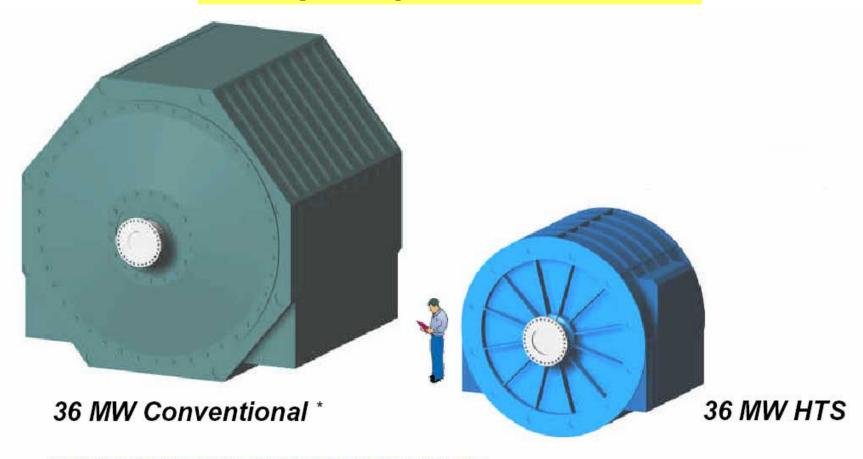
36.5 MW, 120 RPM HTS Ship Propulsion Motor

Scheduled for delivery in early 2006


Designed and built under **ONR** contract

AMSC SuperMachines will deliver the 36.5 MW, 120 rpm motor (integrated with a commercial Variable Frequency Drive)

Motor is designed to power the next generation of Navy warships


Superconducting motor: 69 tons

Advanced normal induction motors of similar torque: > 200 tons

World's largest HTS motor for ship propulsion

Ship Propulsion Motors

^{*} Scale derived from GEC ALSTOM FSAD 19 MW @150 RPM propulsion motor

- Inherently quieter
- Lower operating cost
- Equivalent prices

25% of the volume 30% of the weight Higher net efficiency

Superconducting Transformers

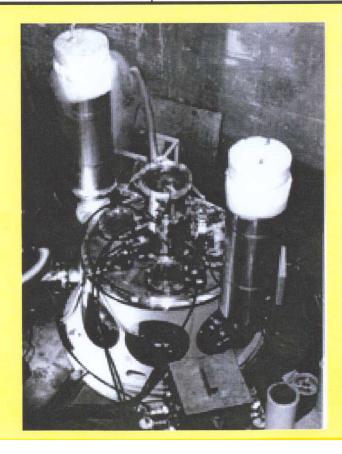
```
Switzerland
  •ABB
  630 kVA / 3 phases:
  successful operation: 1 year at the grid in Geneva
Japan
  •Fuji Electric
  1 MVA / 1 phase transformer
USA
  •ABB / DOE
  10MVA / 3 phases: discontinued (costs)
```

Superconducting Storage Systems

AMSC (USA)

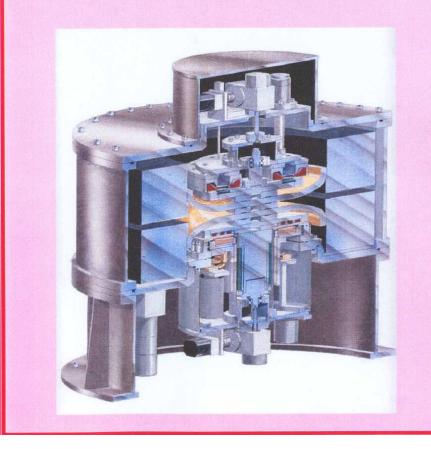
ACCEL (Germany)

Small storage systems (NbTi)
 already on the market


Korea

Under Development

Development of Superconducting Flywheel Energy Storage System


1. 4kWh FESS (developed in 1998)

Max. capacity	1.4 kWh
Rotor	$\phi 600 \times 70 \times 2$ disks
Max. rotation speed	20,000rpm
Rotor weight	65kg

17.5 kWh FESS (developing)

Max. capacity	17.5kWh
Rotor	ϕ 1,200 × 200 × 2disks
Max. rotation speed	10,000rpm
Rotor weight	700kg

Applications where LTS materials are still preferred

- High field magnets (NMR)
- Magnets for Accelerators
- Fusion Magnets

Nuclear Magnetic Resonance (NMR): Nb₃Sn

Europe:

Bruker BioSpin
Oxford

900 MHz
1GHz
Ø 50 mm

USA: NHMFL

wide bore:
ø108 mm

Japan: NRIM

900 MHz

wide bore:
ø108 mm

1GHz

Japan:

NMR User Center RIKEN, Yokohama

≈ 50 NMR magnets
> 200 M EURO

NMR magnet

900 MHz 21 T

Very high field magnets at 4.2 K

Materials: Nb_3Sn 22 T \rightarrow

Bi,Pb(2223) 24 T

Bi(2212) 25.4 T

Large Magnets for Accelerators and Detectors

Europe: LHC (CERN), NbTi technology

Beam Magnet: 1.8 K

Detector Magnet (ATLAS): 4.2 K

Costs > 1 Billion EURO

USA: High Field Accelerators , Nb₃Sn

Berkeley: First experiment with HTS

Magnets for Thermonuclear Fusion

Actual State: HTS only envisaged for current leads

Tokamak KSTAR (South Korea), ITER Technology 100 M Euro

ITER (?) Nb₃Sn Magnet Technology

50 M Euro

Fusion Magnets:

> 1B Euro

The ITER TF Model Coil

40 mm ø in 1.5 mm steel conduit rated current: 70 kA/11.8 T/4,6 K, \sim 1028 strands, Nb₃Sn + 1/3 Cu

ANSALDO - DP4- transfer of 2nd pancake completed . Genova, 19 - 10 - 98

The ITER Machine

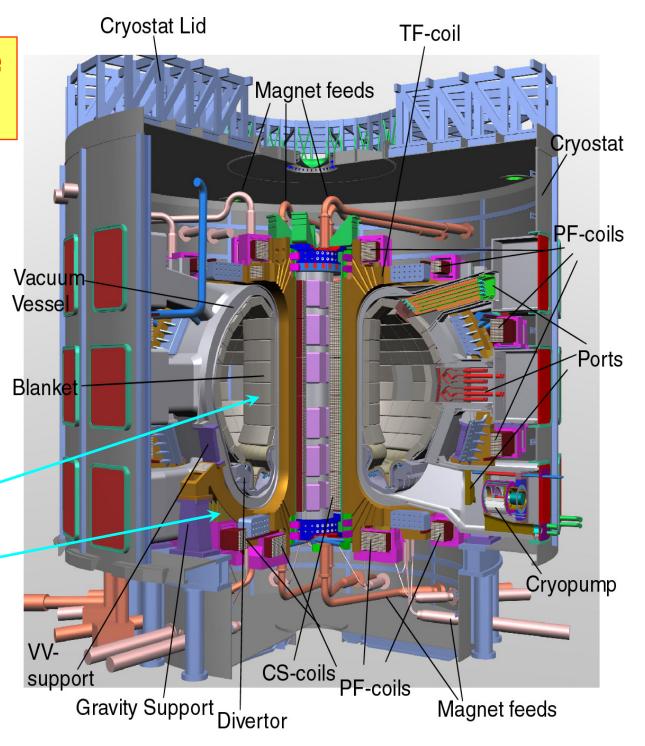
(Tokamak)

LTS conductors

Fusion Power: 500 MW

Plasma Current: 15 MA

Plasma Volume: 837 m³


Torus Radius: 6.2 m

Plasma Radius: 2.0 m

Energy Amplification: Q=10

+ 13,5 T ⇔ - 12 T

12 T

Summary

- Present applications of high current superconductors:
- Main obstacle for large market penetration of HTS: costs
- Only the first generation of HTS (Bi based) has been developed up to industrial scale
- Major effort for such near term applications can be seen mainly for power transmission cables, FCL, large motors and NMR spectrometers
- Second generation of HTS (YBCO) with superior properties still need strong development effort. Time frame: several years

Thanks to:

Prof. P. Komarek ITP Karlsruhe, Germany

Dr. C. M. Rey Dupont, USA

Dr. J.W. Bray General Electric

Prof. O. Tsukamoto Super GM, Japan

Dr. D. Eckert Bruker Biospin, Switzerland

Dr. W. Paul ABB, Switzerland

Dr. A. Malozemoff American Superconductors (AMSC)

Dr. K. Marken Oxford Instruments

Dr. Alan Wolski Argonne Natl. Laboratory, USA

and many others