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Present Status of High Gradient with Niobium SC Cavity

Saturation around 40 MV/m (KEK)
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 Further technical issue? Fundamental limitation?

RF critical measurement (Cornell)

Is there any theoretical explanation?

40MV/m =1750 Oe

Nb cavity is limited around Hp=1800 Oe in both measurements of Puls and CW!!
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Concept of the Superheating

There exists a solution (metastable) in the GL equation, which keeps

the Meissner state up to a field Hsh >Hc1 (type-II) or Hc (type-I). The

field is called as superheating field.

Triangular fluxoids distribution
in a mixed state (vortex state)

Normal

Super
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Finding a correct theoretical T-dependent formula with Hc
rf

Superheating might be still the first candidate for the fundamental limitation in RF

application. There are several predictions with superheating field.
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             Finding a correct model is a job in this work.

Superheating is a prediction from the Abrikosov theory, which is a kind of perturbation

theory. Therefore it is available for T ~ Tc or DDDD ~ 0. Here, small bond gap is assumed

because the RF critical field under consideration is closed to Hc1
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Should be T-dependent
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Finding a correct theoretical T-dependent formula with Hc
rf

Flux line nucleation  

My conclusion with Nb cavity:  Vortex line nucleation model (VLNM)  

Energy balance (DC)

Finding a correct T-dependence of kkkk, straightforwardly we could get

a T-dependent theoretical formula of superheating field :
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Brief Review of Abrikosov Theory

GL-theory: f f
m
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         Brief Review of Abrikosov Theory

Vacuum Superconductor
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               Models of Superheating

Model             Hsh [ Oe ]
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        Useful Formulas from Abrikosov Theory
From Abrikosov Theory
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 Measurements of magnetic properties of superconductors

Flux penetration measurement Output Signal in the pickup coil
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Measurements of magnetic properties of superconductors

   Magnetization measurement   Output Signal in the pickup coil
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  Magnetic properties of niobium material with RRR>2000

               T-dependence of Hc1, Hc and Hc2

Data by A.French
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  Magnetic properties of niobium material with RRR>2000
 
                    Relationship between Hc and Hc1

 

             A good linear relationship is observer between Hc and Hc1.
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 Magnetic properties of niobium material with RRR>2000

       T-dependence of xxxx
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 Magnetic properties of niobium material with RRR>2000

                  T-dependence of kkkk
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Magnetic Properties of Industrial Nb Materials

    T-dependence of Hc, Hc1 and Hc2
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Magnetic Properties of Industrial Nb Materials

            T-dependence of kkkk with

        RRR=246 Tokyo Denkai material
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 Comparison of predictions with experimental results on Nb cavities

Useful predictions as the fundamental limitation with Nb SC cavities will be as:

Hc1, Hc ,

Superheating model by Maticon and Saint-James calculation (MSM) for kkkk        > 1/√√√√2
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 Comparison of predictions with experimental results on Nb cavities
  T-dependence for vortex nucleation by T.Yogi et al.
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 Comparison of VLNM with experimental result on Nb3Sn cavity
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  Comparison of predictions with experimental result on Pb cavity
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Yogi’s et al. work

Tin (Sn) is a Type-I superconductor.

Its Hc
rf is predicted as vortex line nucleation by Yogi et al.

in 1977.
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         For beyond 40 MV/m with niobium cavity
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Hc
rf might be limited around 1800Oe with Nb cavity. The only 5% increase is expected

with higher RRR material.  For the beyond 40 MV/m, one should go to the cavity

deign with the lower Hp/Eacc ratio. For 50MV/m, it should be a range of 36
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                    Conclusions
1) The material properties of niobium material were re-analyzed, and the T-

dependent theoretical formula for GL-kappa parameter (kkkk) was deduced as:
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2) This formula was applied to the analysis of the Hc
rf of Nb and Nb3Sn cavities.

Their Hc
rf limitations are well explained by vortex line nucleation model.

3) The similar analysis was applied to type-I superconducting Pb cavity. Its

Hc
rf limitation is well explained by Maticon and Saint-James calculation.

4) The theoretical RF field limitation will be 1800 Oe with Nb cavity. For the

beyond 40MV/m, we should go to the cavity design with lower Hp/Eacc

ratio.


