Theoretical Critical Field in RF Application

Kenji Saito

High Energy Accelerator Research Organization (KEK), Accelerator Lab

- 1. Introduction and outline
- 2. Abrikosov theory and Several models of superheating field
- 3. Characterization of magnetic property of niobium material
- 4. Comparison between superheating models and experimental results
- 5. Conclusion

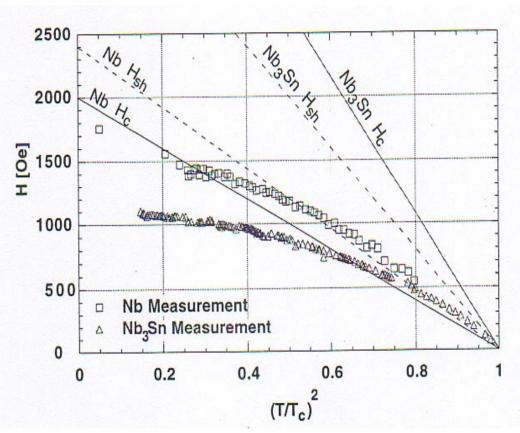
Present Status of High Gradient with Niobium SC Cavity

Saturation around 40 MV/m (KEK)

50 40 Eacc,max [MV/m] 30 40MV/m = 1750 OeSaclay(HT,CP) CEBAF(HT,CP) CEBAF(CP,HPR) Cornell(HT,CP,HPP) KEK(EP.HPR) 10 DESY/CERN/Saclay/KEK(EP,HPR) DESY/JLAB/KEK(Nb seamless cavity, EP,HPR) DESY/JLAB (Nb/Cu clad cavity, CP,HPR) INFN-LNL/KEK(Nb spun cavity, EP,HPR) '92 '90 '94 '96 '98 '00 '02 Date (Year)

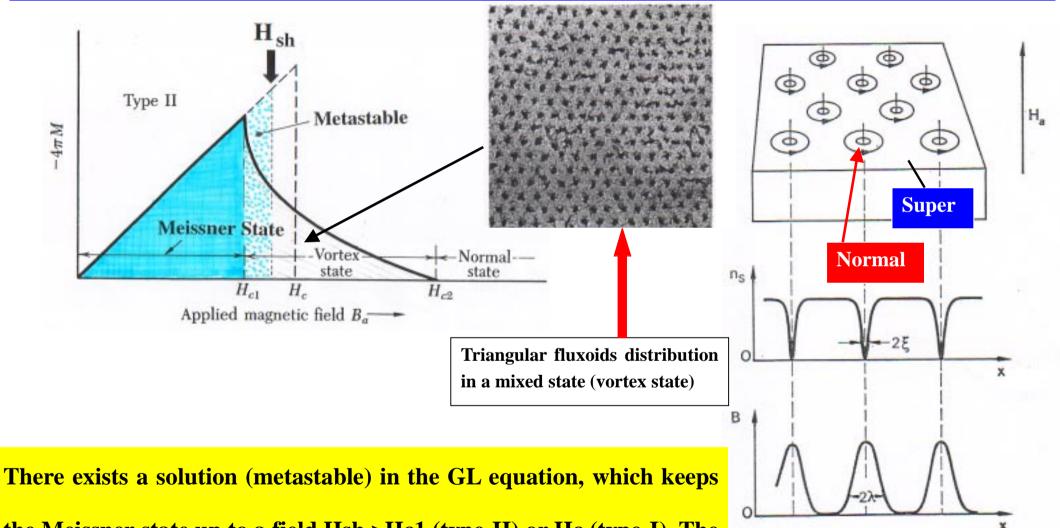
Further technical issue? Fundamental limitation?

RF critical measurement (Cornell)



Is there any theoretical explanation?

Concept of the Superheating



the Meissner state up to a field Hsh >Hc1 (type-II) or Hc (type-I). The field is called as superheating field.

Finding a correct theoretical T-dependent formula with $H_{c}^{\ rf}$

Superheating might be still the first candidate for the fundamental limitation in RF application. There are several predictions with superheating field.

Cornell
$$\mathbf{H_{sh}} = 1.2\mathbf{H_c} \Rightarrow \mathbf{H_{sh}}(\mathbf{T}) = 1.2 \cdot \mathbf{H_c}(0) \cdot [1 - \left(\frac{\mathbf{T}}{\mathbf{T_c}}\right)^2] \qquad \text{for Nb cavity}$$
 analysis

Should be T-dependent

Finding a correct model is a job in this work.

Superheating is a prediction from the Abrikosov theory, which is a kind of perturbation theory. Therefore it is available for T \sim Tc or $\Delta \sim 0$. Here, small bond gap is assumed because the RF critical field under consideration is closed to Hc1

Finding a correct theoretical T-dependent formula with $\mathbf{H}_{c}^{\ rf}$

My conclusion with Nb cavity: Vortex line nucleation model (VLNM)

Energy balance (DC)

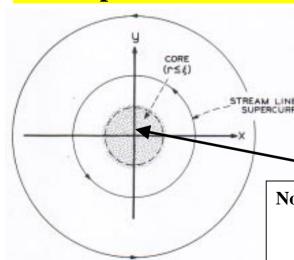
$$(\lambda H_a)^2 = (\xi H_c)^2$$

$$\Rightarrow H_{sh} = \frac{\xi}{\lambda} \cdot H_c = \frac{H_c}{\kappa} , \quad \kappa \equiv \frac{\lambda}{\xi} \quad (GL - parameter)$$

Finding a correct T-dependence of κ , straightforwardly we could get

a T-dependent theoretical formula of superheating field:

$$H_{sh}(T) = \frac{H_c(T)}{\kappa(T)}$$



Flux line nucleation

$$f = f_{core} + f_{mag} = -\pi \xi^2 \frac{H_c^2}{8\pi} + \pi \lambda^2 \frac{H_c^2}{8\pi} \le 0$$

Normal core: condensation energy

magnetic energy

$$f_{core} = -\pi \xi^2 \frac{H_c^2}{8\pi}$$

$$f_{mag} = \pi \lambda^2 \frac{H_c^2}{8\pi}$$

Fluxoid core

Brief Review of Abrikosov Theory

GL-theory:
$$\mathbf{f_{sH}} = \mathbf{f_{n0}} + \alpha |\Psi|^2 + \frac{1}{2}\beta |\Psi|^4 + \frac{1}{2\mathbf{m}^*} \left[\frac{\hbar}{\mathbf{i}} \nabla - \frac{\mathbf{e^*}}{\mathbf{c}} \mathbf{A} \right] \Psi^2 + \frac{\mathbf{h}^2}{8\pi}$$

GL-equation equation $(m^*=2m, e^*=2e m)$: electron mass, e: electron charge)

$$\frac{1}{4\mathbf{m}} \left(-\mathbf{i}\hbar\nabla - \frac{2\mathbf{e}}{\mathbf{c}} \mathbf{A} \right)^{2} \Psi + \alpha\Psi + \beta |\Psi|^{2} \Psi = 0, \quad \mathbf{J} = -\frac{\mathbf{i}\mathbf{e}\hbar}{2\mathbf{m}} \left(\Psi^{*}\nabla\Psi - \Psi\nabla\Psi^{*} \right) - \frac{2\mathbf{e}^{2}}{\mathbf{m}\mathbf{c}} |\Psi|^{2} \mathbf{A}$$
Boundary condition $\left(\frac{\hbar}{\mathbf{i}} \nabla - \frac{2\mathbf{e}}{\mathbf{c}} \mathbf{A} \right) \Psi|_{\mathbf{b}} = 0$

$$\alpha(\mathbf{T}) = -\frac{2\mathbf{e}^2}{\mathbf{mc}^2} \mathbf{H}_{\mathbf{c}}^2(\mathbf{T}) \lambda^2(\mathbf{T}), \ \beta(\mathbf{T}) = \frac{16\pi\mathbf{e}^4}{\mathbf{m}^2\mathbf{c}^4} \mathbf{H}_{\mathbf{c}}^2(\mathbf{T}) \lambda^4(\mathbf{T})$$

Dimensionless variables:

$$\mathbf{r'} = \frac{\mathbf{r}}{\lambda} , \mathbf{h'} = \frac{\mathbf{h}}{\sqrt{2}\mathbf{H_c}} , \mathbf{A'} = \frac{\mathbf{A}}{\sqrt{2}\mathbf{H_c}\lambda} , \mathbf{\Psi'} = \frac{\Psi}{\Psi_{\infty}} \qquad \kappa \equiv \frac{2\sqrt{2}\mathbf{e}}{\hbar\mathbf{c}} \mathbf{H_c}\lambda^2 = \frac{\lambda}{\xi}$$

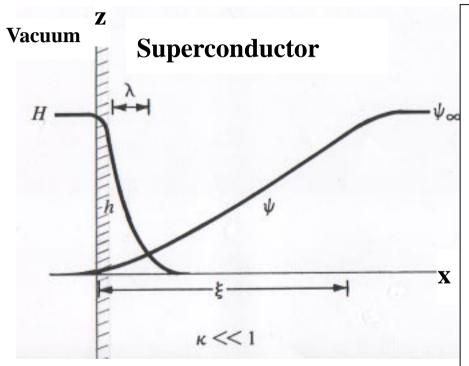
$$\left(\frac{\mathbf{i}}{\kappa}\nabla - \mathbf{A}\right)^2 \Psi - \Psi + |\Psi|^2 \Psi = 0$$

$$\left(\frac{\mathbf{i}}{\kappa}\nabla - \mathbf{A}\right)\Psi|_{\mathbf{b}} = 0$$

$$\nabla \times \nabla \mathbf{A} = \frac{\mathbf{i}}{2\kappa} \left(\Psi^* \nabla \Psi - \Psi \nabla \Psi^*\right) - |\Psi|^2 \mathbf{A}$$

Brief Review of Abrikosov Theory

One dimensional calculation of surface energy



$$g = f - \frac{hH}{4\pi}$$
 g:Gibbs free energy density, f: Free energy density

$$\mathbf{g_n} = \mathbf{f_{n0}} + \frac{\mathbf{H_c^2}}{8\pi} - \frac{\mathbf{H_c^2}}{4\pi} = \mathbf{f_{n0}} - \frac{\mathbf{H_c^2}}{8\pi} \quad \text{at } \mathbf{x} = -\infty$$

Surface energy:

$$\sigma_{ns} \equiv \int_{-\infty}^{\infty} dx \{g_{sH} - g_n\} = \int_{-\infty}^{\infty} dx \{f_{sH} - \frac{hH_c}{4\pi} - f_{s0}\}$$
$$= \int_{-\infty}^{\infty} dx \{-\frac{\beta}{2} |\Psi|^4 + \frac{(h - H_c)^2}{8\pi}\}$$

or in dimensionless units

$$= \frac{\mathbf{H_c^2}}{4\pi} \lambda \int_{-\infty}^{\infty} \mathbf{dx'} \left\{ -\frac{1}{2} |\Psi'|^4 + [\mathbf{h'} - 1/\sqrt{2}]^2 \right\}$$

$$\kappa < \frac{1}{\sqrt{2}} \cdots \sigma_{ns} > 0$$
, type I superconductor $\kappa > \frac{1}{\sqrt{2}} \cdots \sigma_{ns} < 0$, type II superconductor

Models of Superheating

$$\frac{1}{\kappa^2} \frac{\mathbf{d}^2 \Psi}{\mathbf{d} \mathbf{x}^2} + \Psi (1 - \mathbf{A}^2) - \Psi^3 = 0$$

boundary condition:

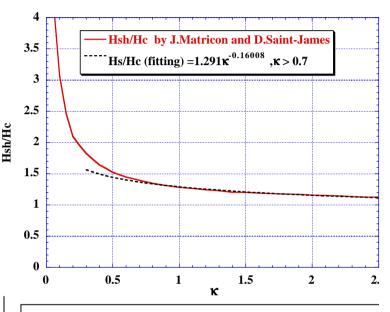
$$\frac{\mathbf{d}\Psi}{\mathbf{d}\mathbf{x}}\big|_{\mathbf{b}} = 0$$

$$\Psi = 0$$
, $h = \frac{1}{\sqrt{2}}$ (Hc) for $x = -\infty$,

$$\frac{\mathbf{d}^2 \mathbf{A}}{\mathbf{dx}^2} - \Psi^2 \mathbf{A} = 0 , \mathbf{h} = \frac{\mathbf{dA}}{\mathbf{dx}}$$

$$\Psi = 1$$
, $h = 0$ for $x = \infty$

Model	Hsh [Oe]		Availability
	DC	AC	
I.P.Burger and D.Saint-James (BSM)	Нс	Нс	κ >> 1
J.Maticon and D.Saint-James (MSM)	$\frac{1.29}{\kappa^{0.16}} \cdot \mathbf{H_c}$	$\frac{1.29}{\kappa^{0.16}} \cdot \mathbf{H_c}$	$\kappa > \frac{1}{\sqrt{2}}$
J.Maticon and D.Saint-James (MSM)	$\frac{0.89}{\sqrt{\kappa}} \cdot \mathbf{H_c}$	$\frac{0.89}{\sqrt{\kappa}} \cdot \mathbf{H_c}$	κ << 1
Orsay Group (OGM)	$\frac{\mathbf{H_c}}{\sqrt{\sqrt{2}}\kappa}$	$\frac{\mathbf{H_c}}{\sqrt{\sqrt{2}\kappa}}$	κ << <1
Vortex line nucleation (VLNM)	<u>Η_c</u> κ	$\frac{\sqrt{2}}{\kappa} \cdot \mathbf{H_c}$	all ĸ
Vortex plan nucleation (VPNM)	$\frac{\mathbf{H_c}}{\sqrt{\kappa}}$	$\frac{\sqrt{2}}{\sqrt{\kappa}} \cdot \mathbf{H_c}$	$\kappa < \frac{1}{\sqrt{2}}$



Vortex line nucleation model (VLNM)

energy balance
$$(\lambda \mathbf{H})^2 \approx (\xi \mathbf{H_c})^2$$

Vortex plane nucleation

$$\sigma_{\text{ns}} \approx \frac{1}{8\pi} \lambda H^2 - \frac{1}{8\pi} \xi H_c^2, \ \sigma_{\text{ns}} \Rightarrow 0$$

$$\frac{1}{8\pi} \lambda H^2 = \frac{1}{8\pi} \xi H_c^2$$

$$\frac{1}{8\pi}\lambda H^2 = \frac{1}{8\pi}\xi H_c^2$$

Useful Formulas from Abrikosov Theory

From Abrikosov Theory

$$\mathbf{H_{c2}} = \frac{\phi_o}{2\pi \cdot \xi^2}$$
, $\mathbf{H_c} = \frac{\phi_o}{2\pi\sqrt{2} \cdot \lambda \cdot \xi}$, $\kappa = \frac{\lambda}{\xi} = \frac{\mathbf{H_{c2}}}{\sqrt{2}\mathbf{H_c}}$

Empirical T-dependent formulas
$$\mathbf{H_c(T)} = \mathbf{H_c(0)} \cdot \left[1 - \left(\frac{\mathbf{T}}{\mathbf{T_c}} \right)^2 \right], \ \lambda(\mathbf{T}) = \frac{\lambda(\mathbf{0})}{\sqrt{1 - \left(\frac{\mathbf{T}}{\mathbf{T_c}} \right)^4}}$$

$$\xi = \frac{\phi_o}{2\pi\sqrt{2}\lambda \cdot \mathbf{H_c}} \implies \xi(\mathbf{T}) = \xi(\mathbf{0}) \cdot \sqrt{\frac{1 + (\mathbf{T}/\mathbf{T_c})^2}{1 - (\mathbf{T}/\mathbf{T_c})^2}}$$

$$\kappa = \frac{\lambda}{\xi} \implies \kappa(\mathbf{T}) = \frac{\kappa(\mathbf{0})}{1 + (\mathbf{T}/\mathbf{T_c})^2}$$

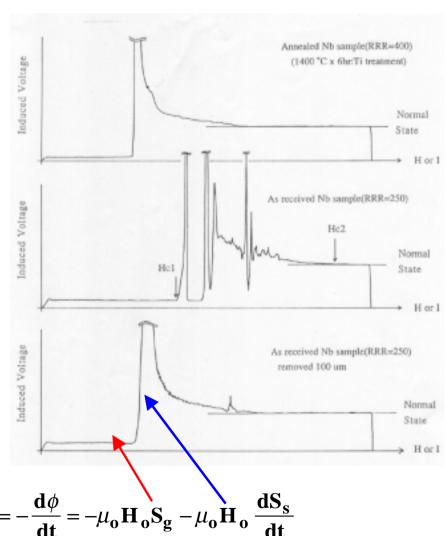
$$\mathbf{H_{c2}} = \sqrt{2} \cdot \kappa \cdot \mathbf{H_c} \implies \mathbf{H_{c2}}(\mathbf{T}) = \mathbf{H_{c2}}(\mathbf{0}) \cdot \frac{1 - (\mathbf{T}/\mathbf{T_c})^2}{1 + (\mathbf{T}/\mathbf{T_c})^2}$$

Measurements of magnetic properties of superconductors

Flux penetration measurement

D.C. power supply

Output Signal in the pickup coil



$$\phi(\mathbf{t}) = \mu_{\mathbf{o}} \mathbf{H}(\mathbf{t}) \cdot \left(\mathbf{S}_{\mathbf{s}} + \mathbf{S}_{\mathbf{g}} \right), \ \mathbf{H}(\mathbf{t}) = \mathbf{H}_{\mathbf{o}} \cdot \mathbf{t} \qquad \Rightarrow \quad \mathbf{V}_{\mathbf{out}} = -\frac{\mathbf{d}\phi}{\mathbf{d}\mathbf{t}} = -\mu_{\mathbf{o}} \mathbf{H}_{\mathbf{o}} \mathbf{S}_{\mathbf{g}} - \mu_{\mathbf{o}} \mathbf{H}_{\mathbf{o}} \frac{\mathbf{d}\mathbf{S}_{\mathbf{s}}}{\mathbf{d}\mathbf{t}}$$

Measurements of magnetic properties of superconductors

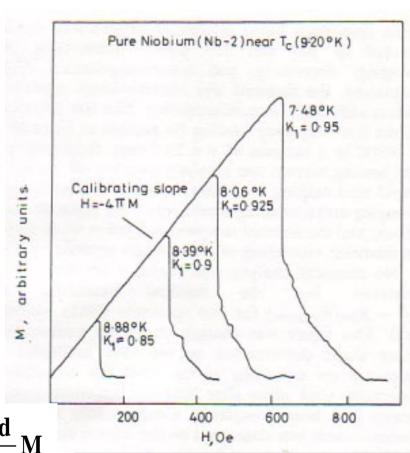
Magnetization measurement

$E \ll \frac{dI}{dt}$ $H_a(t) = \frac{1}{2}$ $A = \frac{1$

$$V_{out} = V_A - V_B \propto -\frac{d}{dt}\mu_o(H + M) + \frac{d}{dt}\mu_oH = -\frac{d}{dt}M$$

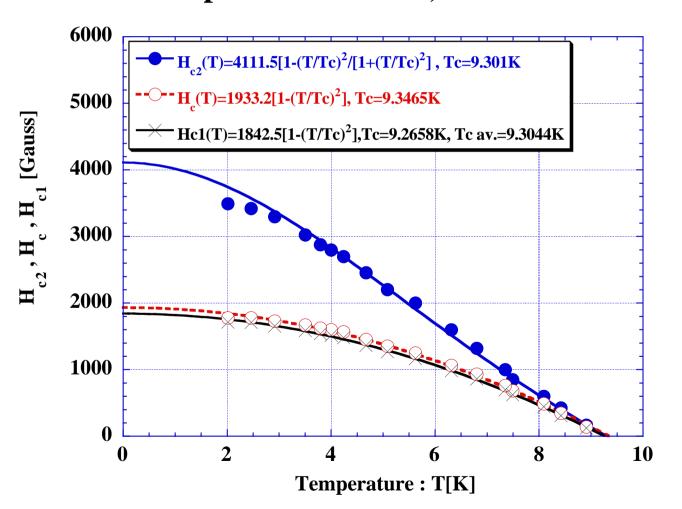
$$\mathbf{M} = \int_{0}^{t} \frac{\mathbf{d}}{\mathbf{d}t} \mathbf{M} \cdot \mathbf{d}t = -\int_{0}^{t} \mathbf{V}_{\mathbf{out}} \cdot \mathbf{d}t$$

Output Signal in the pickup coil



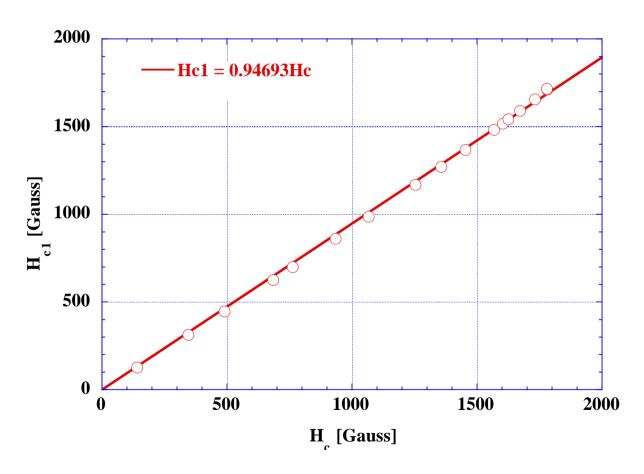
$$F_n(T) - F_s(T) = -\int_0^{H_c 2} M \cdot dH = \frac{H_c^2}{8\pi}$$

T-dependence of Hc1, Hc and Hc2



Data by A.French

Relationship between Hc and Hc1



A good linear relationship is observer between Hc and Hc1.

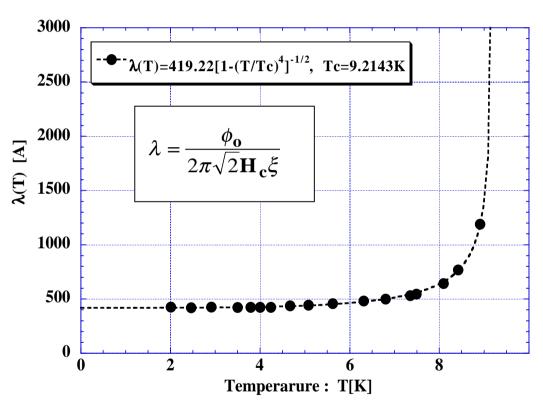
T-dependence of ξ

2000 ----\xi(T)=\xi(0)*\{\left[1+(T/Tc)^2/\left[1-(T/Tc)^2\right]\right]^{1/2}, Tc=9.3023K, R=0.99789} ----\xi(T)=\xi(0)*\left[1-T/Tc\right]^{1/2}, Tc=9.2299K, R=0.99837 1500 \xi(T) \quad \xi = \sqrt{\frac{\phi_0}{2\pi H_{c2}}} \quad \text{1000} 500 0 2 4 6 8 10 Temperature: T[K]

$$\xi(T) = 282.6 \sqrt{\frac{1 + (T/T_c)^2}{1 - (T/T_c)^2}}, T_c = 9.302K$$

$$\xi(T) = \frac{260.2}{\sqrt{1 - (T / T_c)}}$$
 @ $T \cong T_c$, $T_c = 9.300K$

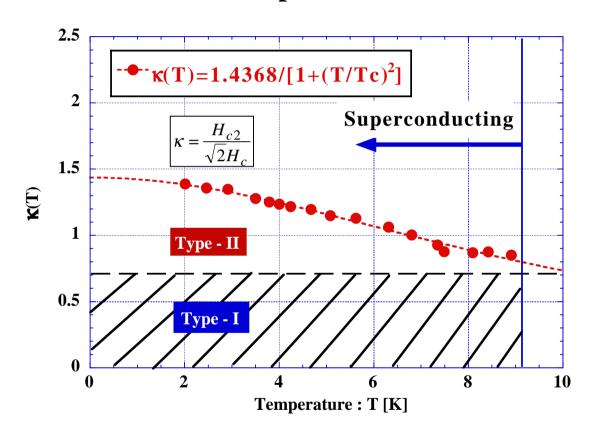
T-dependence of λ



$$\lambda(\mathbf{T}) = \frac{419.2}{\sqrt{1 - (\mathbf{T} / \mathbf{T_c})^4}}, \mathbf{T_c} = 9.214 \mathbf{K}$$

Very good fitting!

T-dependence of **k**

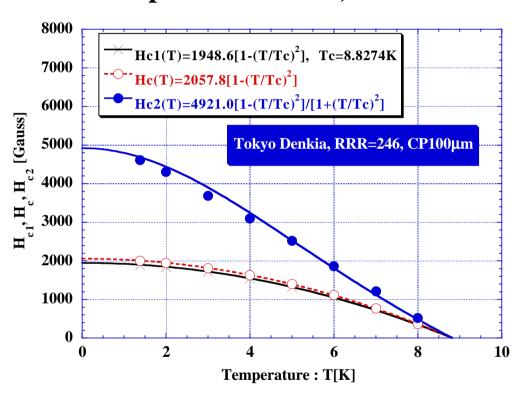


$$\kappa(T) = \frac{H_{c2}(0)}{\sqrt{2}H_{c}(0)} \cdot \frac{1}{1 + (T/T_{c})^{2}} = \frac{1.437}{1 + (T/T_{c})^{2}}, T_{c} = 9.214K$$

Good fitting!

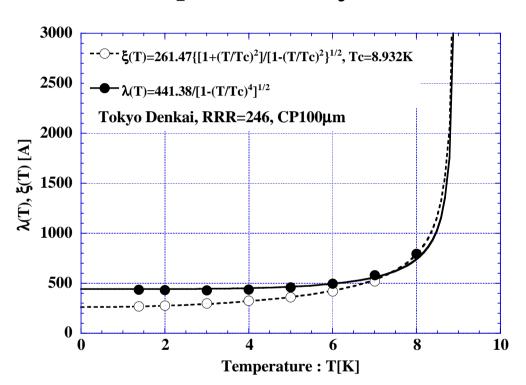
Magnetic Properties of Industrial Nb Materials

T-dependence of Hc, Hc1 and Hc2



$$H_c(T) = 2057.8 \cdot [1 - (T/T_c)^2], T_c = 8.827K$$
 $H_{c1}(T) = 1948.6 \cdot [1 - (T/T_c)^2]$
 $H_{c2}(T) = 4921.0 \cdot \frac{[1 - (T/T_c)^2]}{[1 + (T/T_c)^2]}$

T-dependence of ξ

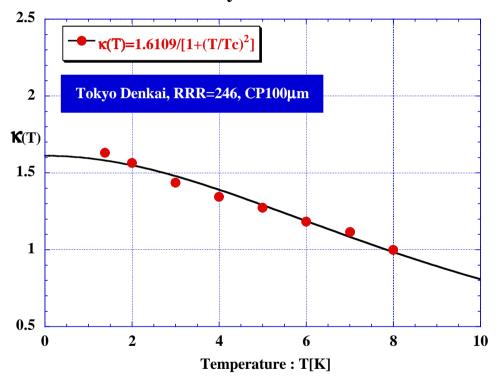


$$\xi(T) = 261.5 \cdot \sqrt{\frac{1 + (T/T_c)^2}{1 - (T/T_c)^2}}, T_c = 8.932K$$

$$\lambda(T) = \frac{441.4}{\sqrt{1 - (T/T_c)^4}}$$

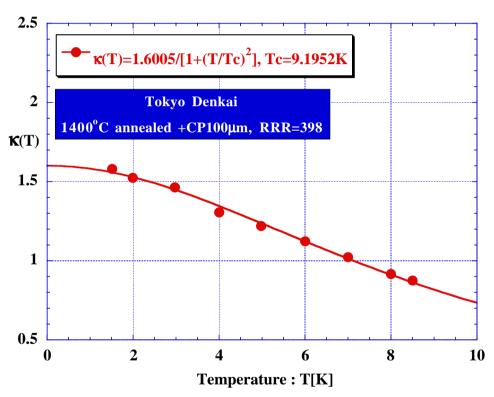
Magnetic Properties of Industrial Nb Materials

RRR=246 Tokyo Denkai material



T-dependence of κ with RRR=400 Tokyo Denkai

material (annealed 1400°C with Ti)



$$\kappa(T) = \frac{1.611}{1 + (T / T_c)^2}$$
, $T_c = 8.93K$

$$\kappa(T) = \frac{1.601}{1 + (T/T_c)^2}, T_c = 9.195K$$

Comparison of predictions with experimental results on Nb cavities

Useful predictions as the fundamental limitation with Nb SC cavities will be as:

Hc1, Hc,

Superheating model by Maticon and Saint-James calculation (MSM) for $\kappa > 1/\sqrt{2}$

$$H_{sh} = \frac{1.3 \cdot H_c}{\kappa^{0.16}} \implies H_{sh}(T) = \frac{1.3 \cdot H_c(T)}{\kappa(T)^{0.16}} = \frac{1.3 \cdot H_c(0) \cdot [1 - (T/T_c)^2]}{\{\kappa(0)/[1 + (T/T_c)^2]^{0.16}},$$

Vortex line nucleation model (VLNM) for all κ

$$\mathbf{DC} \cdots (\lambda \mathbf{H})^2 = (\xi \mathbf{H_c})^2$$

$$\rightarrow \mathbf{AC} \cdots \left(\lambda \frac{1}{\sqrt{2}} \mathbf{H}\right)^2 = (\xi \mathbf{H_c})^2 \Rightarrow \mathbf{H_{sh}}(\mathbf{T}) = \frac{\sqrt{2} \cdot \mathbf{H_c}(\mathbf{T})}{\kappa(\mathbf{T})} = \sqrt{2} \cdot \frac{\mathbf{H_c}(0)}{\kappa(0)} \left[1 - \left(\frac{\mathbf{T}}{\mathbf{T_c}}\right)^4 \right] = 1780 \cdot \left[1 - \left(\frac{\mathbf{T}}{\mathbf{T_c}}\right)^4 \right],$$

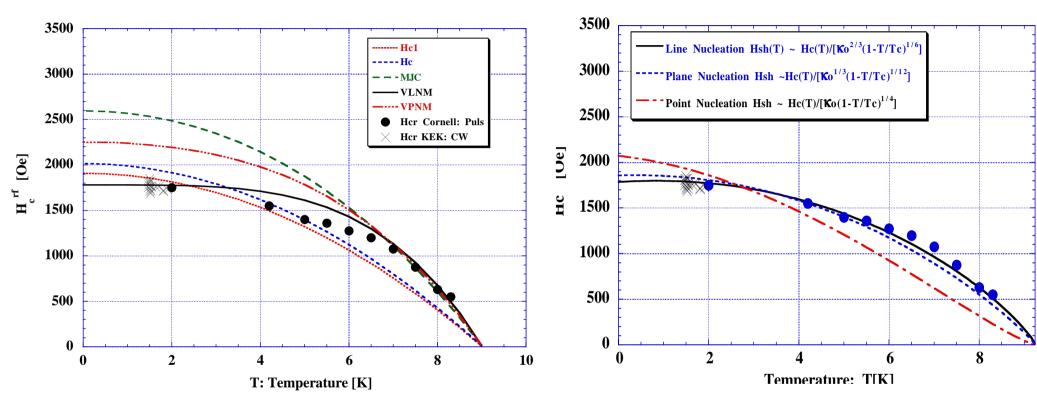
and Vortex plane nucleation model (VPNM)

$$AC \cdots H_{sh}(T) = \frac{\sqrt{2}H_c}{\sqrt{\kappa}} = \frac{\sqrt{2}H_c(0)}{\sqrt{\kappa(0)}} \cdot [1 - (T/T_c)^2] \cdot \sqrt{1 + (T/T_c)^2}$$
$$= 2253.4 \cdot [1 - (T/T_c)^2] \cdot \sqrt{1 + (T/T_c)^2}$$

Comparison of predictions with experimental results on Nb cavities

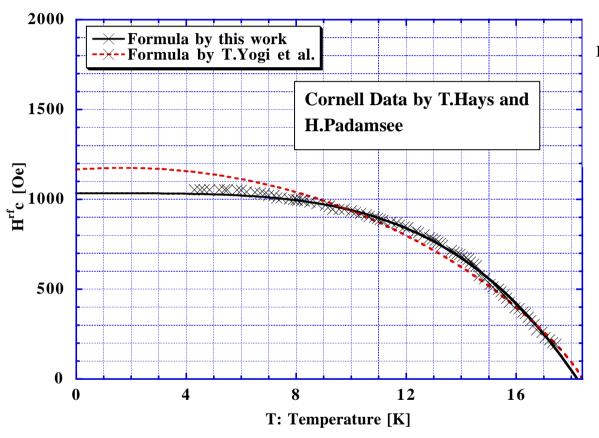
T-dependent formulas in this work

T-dependence for vortex nucleation by T.Yogi et al.



$$\begin{split} \mathbf{H_{sh}(T)} &= \sqrt{2} \cdot \frac{\mathbf{H_c(0)}}{\kappa(0)} \cdot [1 - (\mathbf{T} \, / \, \mathbf{T_c})^4] \quad \cdots \text{ VLNM } \quad \mathbf{H_{sh}(T)} \quad \approx \quad \frac{1}{\kappa(0)^{2/3} \cdot [1 - (\mathbf{T} \, / \, \mathbf{T_c})]^{1/6}} \quad \cdots \text{ VLNM} \\ &= 1780 \cdot [1 - (\mathbf{T} \, / \, \mathbf{T_c})^4] \\ \mathbf{T_c} &= 9.0138 \mathbf{K}, \, \mathbf{H_c(0)} = 2015.5 \, \, \mathbf{Oe}, \, \kappa(0) = 1.601 \quad \mathbf{H_{sh}(T)} \quad \approx \quad \frac{1}{\kappa(0)^{1/3} \cdot [1 - (\mathbf{T} \, / \, \mathbf{T_c})]^{1/12}} \quad \cdots \text{ VPNM} \end{split}$$

Comparison of VLNM with experimental result on Nb₃Sn cavity



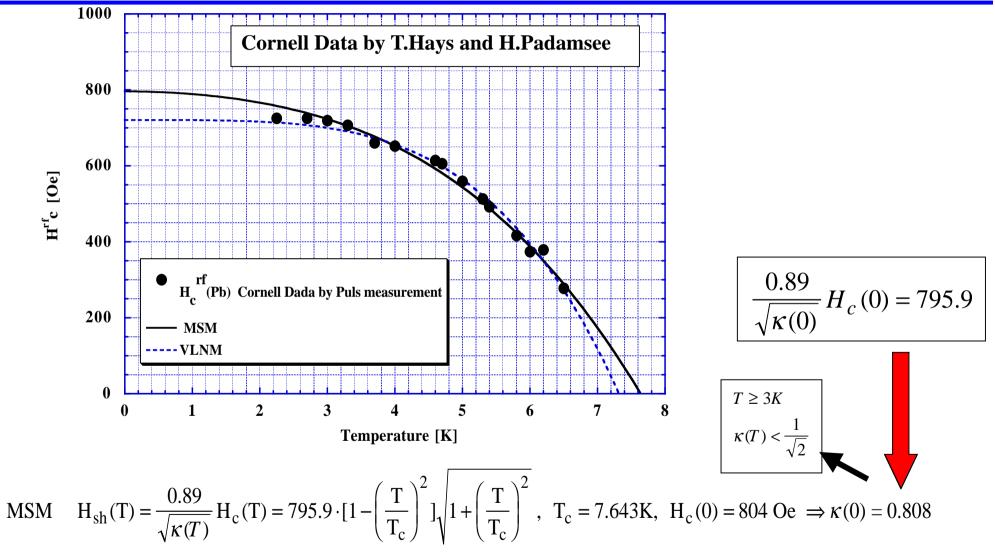
$$\mathbf{H_{sh}(T)} = \frac{\sqrt{2}\mathbf{H_c(0)}}{\kappa(0)} \cdot [1 - (\mathbf{T}/\mathbf{T_c})^4]$$
$$= 1033.3 \cdot [1 - (\mathbf{T}/\mathbf{T_c})^4] , \mathbf{T_c} = 18.226\mathbf{K}$$

$$\mathbf{H_c}(0) = 5400 \ \mathbf{Oe} \implies \kappa \mathbf{0} = 7.39$$

Reasonable results!!

Vortex line nucleation model well explains the H_c^{rf} of Nb₃Sn.

Comparison of predictions with experimental result on Pb cavity

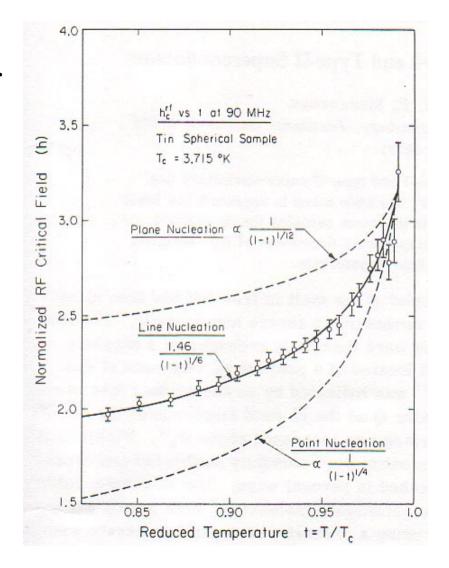


VLNM
$$H_{sh}(T) = \frac{\sqrt{2}}{\kappa(T)} H_c(T) = 720.2 \cdot [1 - (\frac{T}{T_c})^4]$$
, $T_c = 7.322K$, $H_c(0) = 804$ Oe $\Rightarrow \kappa(0) = 1.579$ type - II ??

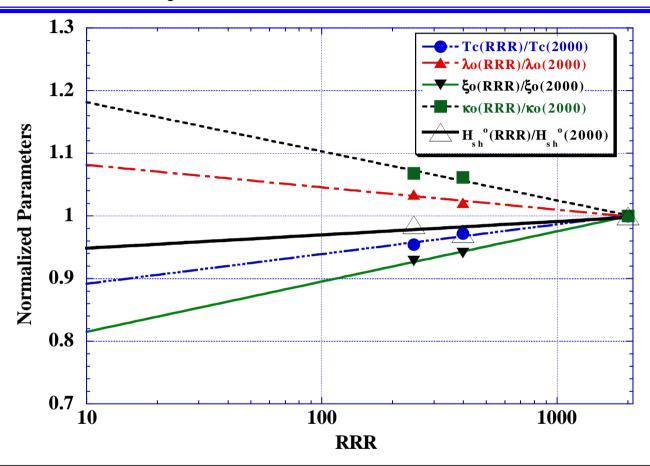
Yogi's et al. work

Tin (Sn) is a Type-I superconductor.

Its $H_c^{\ rf}$ is predicted as vortex line nucleation by Yogi et al. in 1977.



For beyond 40 MV/m with niobium cavity



 ${\rm H_c}^{\rm rf}$ might be limited around 1800Oe with Nb cavity. The only 5% increase is expected with higher RRR material. For the beyond 40 MV/m, one should go to the cavity deign with the lower Hp/Eacc ratio. For 50MV/m, it should be a range of 36

Conclusions

1) The material properties of niobium material were re-analyzed, and the T-dependent theoretical formula for GL-kappa parameter (κ) was deduced as:

$$\kappa(\mathbf{T}) = \frac{\kappa(0)}{1 + \left(\frac{\mathbf{T}}{\mathbf{T_c}}\right)^2}$$

- 2) This formula was applied to the analysis of the $H_c^{\ rf}$ of Nb and Nb₃Sn cavities. Their $H_c^{\ rf}$ limitations are well explained by vortex line nucleation model.
- 3) The similar analysis was applied to type-I superconducting Pb cavity. Its $H_c^{\ rf}$ limitation is well explained by Maticon and Saint-James calculation.
- 4) The theoretical RF field limitation will be 1800 Oe with Nb cavity. For the beyond 40MV/m, we should go to the cavity design with lower Hp/Eacc ratio.