Future Stable-beam Accelerators for Nuclear Physics

Leigh Harwood Jefferson Lab

SRF2003 September 12, 2003 Lubeck, Germany

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

Outline

J-PARC

Japanese Proton Accelerator Research Complex

Collaboration between JAERI and KEK Complex of accelerators for MANY goals

- Nuclear and particle physics
 - 50 GeV primary beam
 - Secondary beams
 - Kaon, pion, hyperon, neutrino, muon, and anti-proton
- Materials and life sciences
 - Pulsed neutron source (3 GeV, pulsed)
- Accelerator transmutation of radioactive waste
 - Includes an srf linac section

JPARC (cont'd)

J-PARC Schedule

��∕CEPAF/JAERI

Center for Proton Acc. Faciliti

Phase I is underway Phase II is not yet approved

Brookhaven National Lab

RHIC-II

Upgrade in the luminosity of RHIC

eRHIC

Electron-ion collider

RHIC-II

RHIC-II is a luminosity upgrade to RHIC (Relativistic Heavy Ion Collider)

The route is to use electron-cooling.

- Copper Novosibirsk
- SRF BNL/JLab collabroation

Anticipated increased average luminosity

- 9x for Au-Au (100 GeV/u): $0.8 \times 10^{27} \Rightarrow 7 \times 10^{27}$
- 3x for \vec{p} \vec{p} (250 GeV/u): 2.4 x10³² \Rightarrow 8x10³²

RHIC Luminosity with and without e-cooling

RHIC Electron Cooler R&D

dampers and high beam break-up threshold BNL-JLab collaboration

Energy Recovery Linac – large bore (19 cm diameter)

Energy Recovery Linac – HOM Damping

Energy Recovery Linac – HOM damping

TDBBU results: 4 cavities; ferrite damping; 1 A

Electron-lon Colliders

Over the past two decades we have learned a great amount about the hadronic structure

Some crucial questions remain open:

- What is the structure of the proton and neutron in terms of their quark and gluon constituents?
- How do quarks and gluons evolve into hadrons?
- What is the quark-gluon origin of nuclear binding?

A high-luminosity electron—ion collider has been proposed as a powerful new microscope to probe the structure of matter.

Thomas Jefferson National Accelerator Facility

EIC parameters

Center-of-mass energy between 20-45 GeV with energy asymmetry of ~10

- 3 GeV electrons on 30 GeV/nucleon ions
- 5 GeV electrons on 100 GeV/nucleon ions

Ion species of interest:

Whole periodic table (theorist dependent)

CW Luminosity:

>10³³ cm⁻² sec⁻¹ per nucleon (HERA achieved ~5x10³²)

Polarized beams (electrons and light ions)

- Longitudinal polarization ≥ 50%
- Transverse polarization of ions extremely desirable
- Spin-flip of both beams extremely desirable

Review article on EIC's: ICFA Beam Dynamics Newletter #30; April, 2003; (Wei and Merminga, ed.)

Thomas Jefferson National Accelerator Facility

eRHIC: ring-ring option (baseline)

eRHIC: linac-ring option

Jefferson Lab

12 GeV

Upgrade the present accelerator from 6 GeV to 12 GeV

25 GeV

Upgrade the 12 GeV accelerator to 25 GeV

eLIC

Use the 5 GV of linac as the basis for an EIC

12 GeV

Advances in understanding of hardonic matter using JLab's 6 GeV electron accelerator.

- Detailed mapping of the charge structure of the neutron
- Detailed mapping of electro-magnetic structure of the proton
- Dirth of strange quarks in the proton
- Discovery of the penta-quark.

New windows would be opened by increasing to 12 GeV

- Exotic mesons (hybrids of gluonic flux tubes and quarks)
- Route to possible explanation of quark confinement
- Symmetry tests of the Standard Model
- Short-range behavior of QCD

12 GeV cryomodule

Specifications

- 7-cell cavities
- Average accelerating field: 19.2 MV/m
- Q₀: >8x10⁹

Status:

- 1st cryomodule with 7-cell cavities operating in CEBAF
- 2nd will soon be installed in JLab FEL
- "100 MV" cryomodule
 - Being constructed
 - Exploring cavity shape options for overall system optimization

Cavity Designs for 12 GeV

	00	HG	LL
Ø _{equator} [mm]	187	180	174
Ø _{iris} [mm]	70	61	53
k _{cc} [%]	3.3	1.7	1.5
E _{peak} /E _{acc}	2.6	1.9	2.2
B _{peak} /E _{acc} [mT/(MV/m)]	4.6	4.3	3.7
R/Q [Ω]	96	112	129
G [Ω]	274	265	280
R/Q·G [Ω·Ω]	26k	30k	36k

Poster: Kneisel, et al

electron-Light-Ion Collider (eLIC) at JLab

Could do a linac-ring

- Same luminosity as eRHIC
- Same leap needed in injector performance

Alternative: hybrid between ring-ring and linac-ring

- Store the electron beam for ~100 turns in a circulator ring (CR)
- Potential advantages:
 - •Electron beam disruption less of a problem than for ring-ring
 - •Reduces average current in linac by 100x (pulsed beam in linac)
 - •Reduces requirement on electron source by 100x
 - •BBU/HOM problems easier by $100x \Rightarrow$ cavities are easier
- Don't know how far circulator ring concept can really be pushed ⇒ needs accelerator physics R&D

Thomas Jefferson National Accelerator Facility

eLIC with a Circulator Ring

R&D Needs for EIC's

	Ring-ring	Linac-ring	CR-ring	Active R&D
Luminosity	10 ⁵⁵	1055	10°° 10° 10°°	NaD
e-cooling "¼A" cw gun "½A" cavities	. Yes	Yes	Yes	BNL, Cornell, Jlab
Radiative polarization	Yes	_	_	BNL
e-gun current (~1mA now)		130 mA	5 16 25 mA mA mA	JLab
High-energy, high-current energy recovery	_	Yes	Yes	JLab
Circ. ring accel. physics.			Yes	Jlab

SRF R&D

Electron cooling

- 705 and 1497 MHz
- Cutting-edge SRF performance is not critical
- HOM damping: ~¹/₂A

Linacs

- 705 and 1497 MHz
- "Floor gradient" (MV per meter of tunnel) is important
- Heat load reduction
 - Increase Q₀
 - Optimize shape
- HOM damping
 - Linac-ring: >130 mA
 - CR-ring: 25 mA

Thomas Jefferson National Accelerator Facility

Summary

New fixed-target and collider facilities are being built or designed in Japan and the US.

SRF is integral to all the US facilities.

Plenty of R&D opportunities

