

MICHIGAN STATE MICHIG

Rare Isotope (Heavy Ion) Accelerators

Stan O. Schriber Terry Grimm

NSCL Michigan State University East Lansing, MI 48824, USA

MICHIGAN STATE UN I V E R SI T YUN I V E R

- What are the drivers for rare isotope studies?
- Examples of reach into isotope space and reasons.
- Examples of planned facilities worldwide.
- Where does SRF fit into these new projects?
- What advances in technology and capability would enhance these future facilities?

MICHIGAN STATE MICHIGAN

SRF Workshop PC

★ DESY: Swaantje Mette, Katrin Lando

- ANL: Jerry Nolen, Hermann Grunder, Ken Shepard, Petr Ostoumov
- GSI Upgrade: Norbert, Hans Geissel
- MSU: Michael Thoennessen, Brad Sherrill, Konrad Gelbke, Richard York, Georg Bollen, Terry Grimm, Walter Hartung
- SPIRAL II: Alban Mosnier.
- TRIUMF: Paul Schmor, Bob Laxdal, Roger Poirier.

Determine important properties of several thousand isotopes previously unavailable experimentally.

Solve fundamental problems of science (major challenges and mysteries of the universe): * Origin of elements heavier than iron! * Stellar evolution theories need good data! (Chemical evolution of universe)

- Nuclear properties (especially for large n/p ratios) and resultant feedback to nuclear theory. Nucleonic matter.
- Reaction cross-sections and other data to support thermonuclear studies. (Stars are complex hydrodynamical systems under extreme conditions.)

Nuclear Landscape

The Chart of the Nuclides

Heavy Elements? 120 100 **Known Nuclei** Fission **Proton Number** Limit? 80 Proton ^DUNNUUUUU 60 Drip Line? 40 The subscription of the second 20 Neutron Drip Line? 0 180 20 40 60 80 100 120 140 160 **Neutron Number**

GAN

YUNIV

SRF Workshop Telemuende 2003

The Origin of the Elements

MICHIGAN STATE MICHIGAN

Telemuende 2003

NASA: Timeline of the Universe

MICHIGAN STATE MICHIGAN STATE

Telemuende 2003

A Few New Planned Facilities – Impact SRF?

MICHIGAN STATE MICHIGAN STATE

- ★ ISOL Isotope Separation On Line
- ★ In Flight
 - ISAC II (Canada)
 - RIKEN RIBF (Japan)
 - GSI Upgrade (Germany)
 - GANIL SPIRAL II (France)
 - RIA (US)

ISAC-II (TRIUMF Canada)

MICHIGAN

IGAN STAT

STAT

MICHIGAN STATE

HIGAN STATE MICHIGAN

The ISAC - II Accelerator Floor Room Low Temp. Test Level Lab Area RF 88 88 0 Gen. B Setup 000000000 Controls 000000000 0 SCRF Wet Lab 0-0 Techn. SCRF SCRF Shop -Prep Clean Assembly Area Room **Cold Chem** Pit Room Pe Pe ** B*** MEBT2 SUPERCONDUCTING LINAC Machine Inte Shop 3 SCL1 SCL2 SCL3 **HIGH ENERGY Electrical Service** Trant **RF Amplifiers EXPERIMENTAL HALL** Cryogenics Trant DTL2 Helium Compr. DTL HEBT MEBT 81-101 101 1 ISAC - I **EXP. HALL** RFQ

SRF Workshop Telemuende 2003

MICHIGAN STAT

MICHIGAN STATE

MICHIGAN STATE

MICHIGAN STATE MICHIG

SRF Workshop Telemuende 2003

TRIUMF Beam Line Layout

MICHIGAN STATE MICHIG

SRF Workshop Telemuende 2003

S

Latest Info: August Webpage

MICHIGAN STATE MICHIGAN

ISAC-II Summary

- Building is now being occupied
- □ SCRF development ongoing in rented space
 - Move to new lab in Sept.
- Phoenix ECRIS source being installed on test stand
 - One year of commissioning planned
- High Beta Cavity design initiated
- \square 20 Medium β Cavities in fabrication
 - Four production cavities delivered
 - Balance delivered in Aug. 2003
- Prototype cryomodule in fabrication and detailed design
 - First cold test by end of 2003
- $\hfill\square$ Five medium β and two high β solenoids ordered
- Refrigerator contract to be awarded this month
 - ➢ phase I − 500W

MICHIGAN STATE MICHIGAN STATE

ISAC-II SC Linac							
Diagn Bo Low	ISAC-II Cryomodules Medium β Solepoid Volve High β (6) Sole OP Sole OP Sol						
Sec Lo Mo His	etion wβ edβ ghβ	β ₀ (%) 4.2 5.7 7.1 10.4	f _{RF} (MHz) 70.7 106 141	No. 8 8 12 20	E _a (MV/m) 5 6 6 6	freq=106.08MHz $E_p/E_a \simeq 5$ $H_p/E_a \simeq 100 \text{ G/(MV/m)}$ $U/E_a \simeq 0.09 \text{J/(MV/m)}^2$ $\Gamma \simeq 19\Omega$	

SRF Workshop Telemuende 2003

RIBF (RIKEN Japan)

MICHIGAN STATE NIVERSITYUNIVERSITY

2003 February **Progress** picture

MICHIGAN STATE MICHIGAN

RI Beam Factory (RIBF): Upgrading project of RIKEN Accelerator Research Facility (RARF)

RIBF Production Rates

MICHIGAN STATE MICHIG

n'r ow

SRF Workshop Telemuende 2003

5

MICHIGAN STATE MICHIG

RIBF Schedule

SRF Workshop Telemuende 2003

GSI Upgrade (Germany)

IICHIGAN STATE MICHIGAN STATE MICHIGAN

- International Accelerator Facility to 1.5GeV/u
 - Blue existing facility
 - UNILAC
 - UNIversal Linear ACcelerator
 - SIS 18 (Tm)
 - Heavy (Schwer) Ion Synchrotron
 - FRS
 - ESR
 - Red upgrade to facility
 - SIS 100 (SC) 1100 m cir.
 - SIS 200 (SC)
 - HESR
 - CR
 - NESR
 - Super-FRS

GSI Rare Isotope Facility

MICHIGAN STATE MICHIGAN

- Schematic of proposed rare isotope beam facility:
 - Super-FRS
 - Collector Ring
 - New Exp. Storage Ring
 - e-A Collider
- High and Low Energy Experimental Areas

SRF Workshop Telemuende 2003

GSI Production Rates

MICHIGAN STATE MICHIGAN STATE

Rationale for Astrophysics Part of GSI Upgrade

MICHIGAN STATE MICHIGAN STATE

5

ICHIGAN STATE MICHIGAN STATE MICHIGAN

Figure 1 : Architecture of the SPIRAL 2 Linac

MICHIGAN STATE MICHIGAN

5

IICHIGAN STATE MICHIGAN STATE MICHIGAN

SRF Workshop Telemuende 2003

RIA Layout for NSCL/MSU

Possibilities to study r-process nuclei

MICHIGAN STATE MICHIGAN STATE

5

Coupled Cyclotron Facility

→ Major additional upgrades and reconfigurations in progress

The Scientific Reach of RIA

MICHIGAN STATE MICHIGAN STATE

RIA still a Proposal (DOE funding R&D -- \$3.5M this fiscal year)

11CHIGAN STATE MICHIGAN STATE MICHIGAN

- Two organizations (with help from many other entities) working design issues ANL & MSU.
 In agreement with Ken Shepard's statements Wednesday.
- Both linac concepts are feasible can provide the beam specifications 400 kW for 400 MeV/u U to 900 MeV p.
 - Two accelerator designs are close in generality.
 - Details differ (e.g. recent ANL 3-spoke cavity study [Ken Shepard WeO08])
 - Much to be done:
 - Optimization.
 - Demonstrating availability of key components.
 - Performance demonstrations for all aspects of control and beam loads.
 - Error tolerances.
 - Beam dynamics code comparisons: 6D phase space as calculated by each team easily meets stringent requirements.
 - Big future efforts could be:
 - Meeting construction schedule with demonstrated technology.
 - Cost optimization.
 - Flexibility for future upgrades.
 - Reliability and component counts/backups.
 - Ease of control and ion species change-over times.
- Besides accelerator:
 - Much work remains on targets, rare-isotope transport, shielding and experimental stations.

MICHIGAN STATE MICHIGAN STATE

Relative to RIA parameters and expected performance

Compared to GSI

- Intensities for most isotopes at least a factor of 100 higher for RIA (varies from *5 for heavy and >*1000 for light).
- Higher energy per nucleon for GSI.
- Compared to ISAC II
 - Isotope reach much higher in A for RIA.
 - Intensities for isotopes higher for RIA.
- Compared to GANIL SPIRAL II
 - Intensities higher for RIA.
 - More isotopes for RIA.
- Compared to RIKEN RIBF
 - Intensities higher for RIA.
 - Re-accelerated beams for RIA.

What does this mean for SRF?

MICHIGAN STATE MICHIGAN

BIG impact !?!

- ★ High quality niobium.
- ☺ Quarter wave cavities.
- Half wave cavities.
 (Cylindrical, spoke, ladder, multi-gap)
- © Elliptical cavities.
- Cryostat designs.
- Tuners, couplers.
- High fields:
 - Reliability, availability, maintainability, repeatability, commissioning ease.
- Cheaper, better faster !?!

Areas for Advances!

- Cavity designs (e.g. multi-gap structures, low-loss ellipticals)
- Material other than Nb.
- Manufacturing techniques.
- ***** Improved stacking factor.
- * Cryostats.
- Control and turn-on systems.
- ✤ Low level rf control.
- ✤ Transient recovery.
- ★ Fast tuners.
- ★ Lorentz force compensation.
- ★ Microphonics control

Summary and Conclusions

- Rare Isotope Accelerators have an interesting future.
- This future has a big impact on SRF.
- Much to be learned in R&D, construction, operations and in the scientific output from users.
- Big steps forward.
- Much work to be done by SRF community.
- Collaborations are extremely important.
- A **FUN** time for all!

Supporting slides for project justification

5

The Scientific Reach of RIA

MICHIGAN STATE MICHIGAN STATE

9/30/2010 2:49 AM

MICHIGAN STATE MICHIGAN STATE

Crust deformation → gravitational wave emission Crust heating → thermal radiation and burst

Need: masses and electron capture rates out to the dripline for A = 34-106

SRF Workshop Telemuende 2003

Nuclear Astrophysics

SRF Workshop Telemuende 2003

5

Rare Isotopes Surround the Valley of Stability

MICHIGAN STATE MICHIGAN STATE

Neutron Dripline Known up to Z = 8 ??

MICHIGAN STATE MICHIGAN

AICHIGAN STATE MICHIGAN STATE MICHIGAN

3/30/2010 2.43 AIVI

5

Availability of Secondary Ions

MICHIGAN STATE MICHIGAN

relemuende 2003

9/30/2010 2:49 AM

Scientific Reach of CCF

9/30/2010 2:49 AM