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Abstract 
The design of low-velocity superconducting structures 

has been an active area of the superconducting rf (srf) 
technology for more than 3 decades.  More recently, with 
the growing interest in medium-energy ion and proton 
accelerators, a sustained world-wide effort has been 
directed toward the development of the superconducting 
structures for the intermediate velocity region.  In this 
tutorial we address the design issues that are specific to 
low- and medium-velocity superconducting cavities.  
Simple electrostatic and electrodynamic models based on 
transmission lines are presented, and scaling laws are 
derived. 

INTRODUCTION 
Until slightly more than a decade ago the field of 

superconducting accelerating structures was clearly 
separated into two distinct velocity regions, each with its 
own community.  The low-velocity structures, designed 
for the acceleration of protons but mostly for heavy ions, 
extended to / 0.2v cβ = ∼ ; these were usually based on 

resonant transmission lines and will be referred to as TEM 
structures.  The high-velocity structures were used almost 
exclusively for the acceleration of electrons or positrons 
and were restricted to 1β ∼ ; these were made of a series 

of coupled cells operating in the TM010 mode and will be 
referred to as TM structures.  Since the late 80’s there has 
been a growing interest in higher energy proton 
accelerators, mostly for spallation sources, and TEM 
structures have been designed for higher and higher 
velocities, while TM structures have been designed for 
lower and lower velocities, until the two have finally 
overlapped in the 0.5 0.6β -∼  region.  An overview and 

comparison of their basic electromagnetic properties in 
this overlap region can be found in [1]. 

Because of the continuous velocity coverage that now 
exists, the meaning of low-, medium-, and high-velocity 
structures is somewhat ill-defined and often variable.  For 
the purpose of this paper we will assume that low velocity 
applies to 0.2β <

�
, medium velocity to 0.2 0.7β< <

� �
and 

high velocity to 0.7β >
�

.  With few exceptions, the low-

velocity structures are of the TEM class, while the 
medium-velocity ones are both of the TEM and the TM 
class.   

TM-class structures used in the medium-velocity region 
are essentially similar to the ones used at high velocity, 
but with their longitudinal dimensions scaled by β, and 
the design issues are almost identical.  Reviews of the 
design process of TM cavities (also often called elliptical) 
can be found in [2, 3], and in this paper we will 

concentrate on the design issues of low and medium-β 
TEM structures. 

 
Low velocity means that the velocity of the particle will 

change as it is accelerated.  The lower its velocity, the 
faster it will change, and the narrower the velocity range 
of a particular accelerating structures.  This implies that 
the smaller the β of a cavity, the smaller the number of 
cavities of that β in an accelerator.  On the other hand, 
failure of a low-β cavity to achieve its design gradient 
may mean that the particle will not be captured by the 
following section.  As a consequence of their small 
number and importance in achieving design gradient, low-
β cavities need to be designed conservatively.  As the β is 
increased they can be designed more aggressively with 
the expectation of achieving the design gradient on 
average. 

 
Unlike axially-symmetric TM structures, TEM 

resonators are essentially 3-dimensional geometries.  
Several 3D electromagnetic design software packages are 
available and are capable of calculating frequencies 
accurately.  They can also provide surface electric and 
magnetic fields but, in this case, the results must be 
interpreted with caution as they can be sensitive to mesh 
size and geometry used. 

 
The design of a low-β structure involves several 

tradeoffs.  One is the number of cells.  The larger the 
number of cells the higher the voltage gain, but the 
narrower the velocity acceptance, and, as a consequence, 
the larger the number of types of cavities that will need to 
be designed.  The choice of frequency is also important as 
it affects size, voltage gain, rf losses, microphonics level, 
rf control, acceptance, beam quality and losses.  A 
detailed discussion of all these issues is beyond the scope 
of this tutorial and we will concentrate of the 
electromagnetic design of a structure once the frequency 
and β have been chosen. 

ENERGY GAIN, TRANSIT TIME FACTOR, 
VELOCITY ACCEPTANCE 

The energy gain acquired by a particle traversing an 
accelerating structure is simply the work done on the 
particle by the electromagnetic field 

 ( ) cos( ) ,W q E z t dzω φ∆
+•

-•

= +Ú  (1) 

where q  is the charge of the particle, ( )E z is the profile 

of the longitudinal electric field, ω  is the angular 
frequency of the electromagnetic field, and φ  is the phase 

of the field when the particle reaches the reference 
position.  The motion of the particle through the cavity is 
reflected in the relationship between position z  and time 
.t   In most cases the field profile is symmetrical and the 
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center of the cavity is chosen as the reference position 
0z =  and we assume that the particle reaches 0z =  at 
0t = .  In Eq. (1) we assumed that the field profile was 

even with respect to the center of the cavity (odd number 
of cells or accelerating gaps).  In the case of an odd field 
profile (even number of cells or accelerating gaps) 
cos( )tω φ+ is replaced by sin( )tω φ+  and all the 

following results will apply to both cases. 
Under the assumption that the energy gain is 

sufficiently small that the velocity of the particle does not 
change in the cavity, the energy gain reduces to 

 0cos ( ) ,W q W Tφ β∆ ∆=  (2) 

where 
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 (3) 

 

0W∆ is the energy gain acquired by a particle of unit 

charge, and of optimal phase ( 0)φ =  and velocity for that 

cavity; and it can be used to represent the magnitude of 
the electromagnetic field.  Θ  is the reduction of the 
energy gain associated  with the time dependence of the 
field; this quantity is often called, particularly with 
reference to room temperature structures, the transit time 
factor.   ( )T β  is an additional reduction of the energy 

gain for particles whose velocity is different from the 
optimal velocity associated with that cavity.  
Unfortunately ( )T β  has also often been called, in 

particular with reference to superconducting structures, 
the transit time factor; in order to eliminate confusion we 
will call ( )T β  the velocity acceptance of the resonator.  

Note that, with the definitions used in Eq. (3) we always 
have 1Θ <  and 0( ) ( ) 1T Tβ β£ = , where 0β  is the value 

of β  for which 
+

-
( ) cos

z
E z dz

c

ω
β

•

•

Ê ˆ
Á ˜Ë ¯Ú  reaches its 

maximum value. 
Transit-time factors and velocity acceptances can be 

calculated for field profiles representative of those that 
can be found in actual cavities. Such field profiles for 1- 
and 2-loading elements (respectively 2- and 3-gap) TEM 
structures are shown in Fig 1.  The parameter α  is used 
to represent the amount of cavity beam line that is 
actually filled by the electric field.  In TEM structures the 
cell-to-cell coupling is very large so, in order to obtain a 
flat field profile, the end cells (side gaps) are actually 

half-cells so ( )E z dzÚ in an end-cell is half what it is in 

the center cells.   

 

 

Figure 1: Field profile for 2-gap (a) and 3-gap (b) TEM 
structures.  V is the voltage generated by the transmission 
line and α is the filling parameter. 

 
Figure 2 shows the transit-time factor Θ  for 2- and 3-

gap structures.  In essence it is the reduction in voltage 
gain acquired by the optimal particle from the voltage 
generated in the resonant line. 

The velocity acceptance ( )T β  can be calculated for the 

same field profiles.  For a 2-gap structure it is 
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and for a 3-gap structure 
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Figure 2: Transit-time factor for 2-gap (a) and 3-gap (b) 
TEM structures as function of the filling parameter α. 

 
Figure 3: Ratio between actual and geometrical β for 2-
gap (left) and 3-gap (right) TEM structures as function of 
the filling parameter α. 

 
The parameter 0x  is the ratio of the distance between 

the center of the end gaps and either 0 / 2lβ λ  for a 2-gap 

structure or 0 / lβ λ  for a 3-gap structure; it is also the ratio 

between the actual 0β  of the structure corresponding to 

the maximum of the velocity acceptance, and the 
geometrical β  of the cavity corresponding to the gap-to-

gap distance.  As the number of cells increases the 
parameter 0x  decreases to 1.  Graphs for 0x  as a function 

of the filling parameter α are shown in Fig 3.  Note, for 
example, that, for a 2-gap structure where a typical value 
of α is 0.5, the distance between the center of the gaps 

should be about 8% smaller than 0

2

β λ
. 

In TM-class cavities the cell-to-cell coupling is much 
weaker than it is in TEM cavities, and the perturbation of 
the end-cell frequency caused by the beam pipe is 
comparable to that caused by the cell-to-cell coupling.  As 
a consequence, in order to obtain a flat field profile in the 
π-mode, the end cells are almost identical to center cells.  
Thus, a good approximation is to assume that the cavity is 
made of N identical cells and the energy gain is  

 
 ( ) ( )W q V x x∆ Θ Φ= , (6) 

 
where / 2x lβλ= , l  being the cell length; V is a reference 

voltage representing the level of excitation of the cavity; 
( )xΘ is the transit-time factor of a single cell and depends 

on the shape of the field profile, not on its magnitude; 
( )xΦ is a phasing  factor for a multi-cell structure and 

depends on the cell length and the amplitude of the field 
in the cells (which are different in each mode), but does 
not depend on the field profile as long as it is identical in 
each cell.  In TM structures a sinusoidal field profile is 
often a good approximation and 

 2

cos
2

( / 2 )
1

x
x l

x

π

βλΘ -

Ê ˆ
Á ˜Ë ¯

= =
-

. (7) 

 
Note that for a matched particle we have ( 1) / 4.x πΘ = =  

 
A multi-cell cavity can resonate in a number of modes 

and, because of imperfection in manufacturing and tuning, 
the accelerating mode will not be a pure π-mode but will 
also include a linear combination of all the other modes.  
The phasing factor ( )xΦ  represents the interaction 

between a particle and a mode and can be calculated for 
all modes.  In an N-cell cavity operating in mode M, the 
amplitude in cell j is  

 
2 1
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and the phasing factor for mode M is 
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 (9) 

Note that for a matched particle (x=1), we have for the π-
mode (M=N) (1)N NΦ = , while for all the non-π-modes 

we have (1) 0M NΦ π = .  In other words, a particle that is 

matched to the cavity, as is always the case for 1β =  

applications, will interact only with the π-mode 
component of the accelerating mode but will not interact 
with all the other components.  In intermediate velocity 
applications, on the other hand, where the β of the 
particles will not always be matched to the cavity β, the 
particles may interact with all the mode components of 
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the accelerating mode depending on how far they are from 
the matched condition.  This is illustrated in Fig. 4 which 
shows for a 6-cell structure the phasing factor for mode 6 
(π=mode), mode 5 (5π/6) and mode 4 (4π/6). 

 
All the previous results are based on the assumption 

that the velocity of the particle does not change while 
traversing the cavity.  In the low-velocity non-relativistic 
limit this assumption may not be valid and the energy 
gain may not be expressed simply by Eq. (2).  Even in this 
case, a simple second-order expression for the energy gain 
can be found [4]: 

( )2

0 (2) (2)

0cos ( ) ( ) sin 2 ( ) ,s

q W
W q W T T T

W
φ β β φ β

∆
∆ ∆= + +È ˘Î ˚

 (10) 
 

where W is the kinetic energy, and  
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The new velocity acceptances (2) ( )T β and (2) ( )sT β are 

not independent functions but are directly related to ( )T β .  

An example for an actual β=0.1, 3-gap TEM structure is 
shown in Fig. 5 [4]. 
 

 
 

Figure 5: First and second order velocity acceptances for a 
3-gap β=0.1 TEM structure. 

  

A SIMPLE MODEL: CAPACITIVELY-
LOADED TEM RESONANT LINE 

 

Electrostatic Design of the High-Voltage Region 
The high-voltage region of a TEM resonator, whether it 

is at the end of a λ/4 or in the middle of a λ/2 transmission 
line, often has a fairly complicated geometry with no 
simple symmetry.  It can, however, be approximated by 
simple shapes with simple symmetries where the 
electrostatic problem can be solved, and provide the 
surface electric fields and loading capacitance with high 
accuracy.  The geometries of interest are 

•  Cylinder between two planes 
•  Concentric cylinders 
•  Sphere between two planes 
•  Sphere inside a cylinder 
•  Concentric spheres 
 
These geometries are shown in Fig. 6.  In all cases we 

assume that the center conductor (of characteristic 
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Figure 4: phasing factor for π, 5π/6, and 4π/6 modes 
in a 6-cell TM cavity as function of particle velocity. 
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dimension 12r ) is at potential V, while the outer conductor 

(of characteristic dimension 22r ) is at ground potential. 

Shown in Fig. 7 is 2
p

r
E

V
 where pE  is the peak surface 

electric filed on the center conductor.  In essence, it is the 
ratio of peak surface electric field to accelerating gradient 
(ignoring the transit time factor Θ  defined in the previous 
section.) 

  
 

 

Figure 6: Geometries for several electrostatic 
configurations: (a) concentric spheres, (b) sphere in 
cylinder, (c) sphere between 2 planes, (d) concentric 
cylinders, (e) cylinder between 2 planes. 

 
 

Figure 7: Ratio of peak to accelerating field for the 
geometries shown in Fig. 6. 

 
Several conclusions can be drawn from Fig. 7.  First the 

surface field is defined mostly by the symmetry of the 
center conductor.  Two-dimensional geometries [(d) and 
(e)] which are more representative of λ/2 structures have 
significant lower surface electric fields than three-
dimensional geometries [(a), (b), and (c)] which are more 

typical of the terminations of λ/4 structures.  Second, the 
geometry of the outer conductor has relatively little 
influence on the surface field.  Third, the peak surface 
field is relatively constant over a wide range of ratio of 
inner to outer dimensions. 

 
Figure 7 indicates that, for λ/2 structures, the ratio of 

peak to accelerating field should be slightly less than 3, 
while, for λ/4 structures, it would be of the order of 4.  
These numbers should be increased by about 10% due to 
the transit time factor Θ  defined earlier and which has 
been ignored here.  These numbers are probably the best 
that can be done with a careful design.  Lower numbers 
that are sometimes quoted often result from a particular 
choice of the accelerating length; on the other hand higher 
numbers can be obtained for a less than optimal design. 

The electrostatic model also produces the capacitance 
of the termination that is needed to complete the design of 
the transmission line, especially for λ/4 structures. 

Electromagnetic Design of a Transmission Line 
Resonant transmission lines are a simple way of 

generating voltages that can be used to accelerate 
particles.  These are either λ/4 where the line is shorted at 
one end, and open at the other, or λ/2 where the line is 
shorted at both ends and the maximum voltage is in the 
middle.  Here we will summarize the basic properties of 
capacitively-loaded λ/4 transmission lines.  A model of 
such a line is shown in Fig. 8.  The results can be easily 
extended to λ/2 structures by applying factors of 2 at the 
appropriate places.   
 

 
 

Figure 8: Model of a capacitively-loaded λ/4 coaxial 
transmission line. 

The following notations will be used and the results will 
be in MKS units: 
b : radius of outer conductor 
( )r z : radius of center conductor 

0r : radius of center conductor at shorting plate 

/r bρ = : normalized radius of center conductor 

z : distance from shorting plate 
4 /zζ λ= : normalized distance from shorting plate 

0 0/ 377η µ ε Ω= � : impedance of vacuum 
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– Capacitance per unit length: 

 0 0
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2 2
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b r

πε πε
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= = . (11) 

– Inductance per unit length: 
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– Current along the center conductor: 

 0 0

2
cos cos

2
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λ
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–Voltage along the center conductor: 
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2
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λ
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– Transmission line impedance: 
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η
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. (15) 

– Loading capacitance: 
The transmission line can be shorter than λ/4 and still 

resonate at the right frequency if it is terminated by the 
appropriate loading capacitance Γ .  The relationship 
between length z , wavelength λ , and capacitance Γ  is 
given by 

 0 0
0 0

2
cotan cotan

2
ln( / ) ln(1/ )

z

b r

π πζ
λλε λε

ρ
Γ

Ê ˆ Ê ˆ
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= = . (16) 

 
– Gradient/Peak magnetic field: 
Neglecting the transit time factor Θ , the energy gain is 
2 pV  over a cavity length (diameter) 2b .  The 

relationship between the gradient and the peak 
magnetic field (at the center conductor near the shorting 
plate) is  

 acc
0

max 0

1
ln sin

2
pVE

c
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πρ ζ
ρ

Ê ˆ Ê ˆ= = Á ˜Á ˜ Ë ¯Ë ¯
 (17) 

For structures that are not too strongly loaded ( 1ζ � ) 

and a center conductor radius close to optimal ( 1
0 eρ -= ) 

we get 9B ª mT at 1 MV/m.  This value is independent 
of the frequency and β of the structure. 

 
– Power dissipation (losses on the shorting plate 

neglected, sR : surface impedance of material): 
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If one assumes that the transverse dimensions scale as β 
we find 

 2 2
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– Energy content: 
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– Geometrical factor: 
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– Shunt impedance ( 24 /pV P ): 
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Equations (16) to (23) describe the basic electromagnetic 
properties of constant-radius capacitively-loaded λ/4 
transmission lines.  These properties can also be 
summarized in a plot of dimensionless quantities: 

– Loading capacitance: 
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2
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πζ
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λε ρ
Γ

= = . (24) 

– Center conductor voltage ( acc max/E B ): 
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– Shunt impedance: 
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-
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 (26) 
This plot, shown in Fig. 9, presents in a ( , )ζ ρ  plane the 

lines of constant , ,  and  p shv rγ .  In this plot, the solid 

lines are the lines of constant loading capacitance; they 
define the length / 4z ζλ=  of a coaxial line of constant 

radius 0 0r bρ= , terminated by a capacitance Γ , and 

resonating at a frequency 2 /cω π λ= .  The dashed line 
then gives the ratio of gradient to peak magnetic field of 
such a resonator, and the dotted line its shunt impedance. 

Since common goals in a structure design are to 
maximize the shunt impedance and ratio of gradient to 
magnetic field, it can be clearly seen from Fig. 9 that the 
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loading capacitance should be as small as possible.  This 
usually is counter to the minimization of the peak surface 
electric field since that often implies a fairly large high-
voltage termination with large radii.  Thus the balance 
between low Emax and low Bmax implies a tradeoff that is 
application-dependent. 

 
 

Figure 9: Lines of constant normalized loading 
capacitance, acc max/E B  and shunt impedance for λ/4 

constant radius coaxial lines. 

 

Figure 10: Normalized shunt impedance as function of 
center conductor radius for various values of the loading 
capacitance for λ/4 coaxial lines of constant radius. 

 

 
Figure 11: Normalized acc max/E B  as function of center 

conductor radius for various values of the loading 
capacitance for λ/4 coaxial lines of constant radius. 

 
It can also be seen from Fig. 9 that maximization of the 

shunt impedance and acc max/E B  cannot be achieved 

simultaneously.  The former requires a thin center 
conductor with 0 / 0.18r b �  while the latter requires much 

larger center conductors with 0 / 0.4r b � .  Here also the 

balance between high Rsh and low Bmax implies a tradeoff 
that is application-dependent. 

 
Figures 10 and 11 present the same results in a different 

format.  Figure 10 shows the normalized shunt impedance 
as function of the radius of the center conductor with the 
loading capacitance as a parameter.  Figure 11 is the same 
for acc max/E B . 

 
All the results presented so far relate to coaxial 

transmission lines of constant radius; structures of 
improved properties can be designed with center 
conductors of variable radius.  When the center conductor 
radius is variable the capacitance and inductance per unit 
length are position dependent and the voltage and current 
distribution obey the following equations (see Fig. 12). 
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Figure 12: Electrical representation of a section of 
transmission line with position-dependent parameters. 

 
Such a transmission line can be terminated at any point 

without changing the voltage and current distribution if 
the termination reactance is given by 

 
( )

( ) ( )
/

i z
z C z

di dz
Γ = - , (28) 

 
Among all the possible shapes for the center conductor, 

two are of particular interest.  The first one is that of 
constant logarithmic derivative of the capacitance  

 
1 1dC

C dz d
= - , (29) 

corresponding to the center conductor profile  

 0

exp( / )
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z d

r
r z b

b
Ê ˆ= Á ˜Ë ¯

 (30) 

Its interest lies in the fact that it is an almost exact 
representation of a straight linear taper and that many of 
its properties can be calculated analytically [6]. 

 
Another profile of interest is that of constant surface 

magnetic field along the center conductor, implying that 
( ) ( )r z i zµ .  In this case the profile of the center 

conductor satisfies [6] 
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d d

dd

ρ ρ π ρ
ρ ρ ζζ

Ê ˆ
+ + =Á ˜Ë ¯

. (31) 

Its electromagnetic properties can also be calculated and a 
plot for this profile, similar to Fig. 9 for a constant radius 
profile, is shown in Fig. 13.  In this plot the heavy solid 
lines are the shapes of the center conductors for several 
starting radii at the shorting plate.  For starting radii  

0 0.2 0.4r b-∼  they are a fair representation of center 

conductors with a straight section followed by a linear 
taper.  Again, maximizing both a high shunt impedance 
and acc max/E B  implies a small loading capacitance.  The 

Figure 13: Profile of center conductors and lines of constant normalized loading capacitance, maximum end 
voltage, and shunt impedance for λ/4 coaxial lines of constant surface magnetic field on the center conductor. 
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former also implies a starting radius at the shorting plate 

0 / 0.18r b � , while the latter implies a much thicker 

center conductor. 
 

Plots for the profile of constant surface magnetic field, 
similar to Figs. 10 and 11 for the constant radius profile 
are shown in Figs. 14 and 15.  Comparison between these 
two sets of plots shows the improvement of the  
electromagnetic properties provided by profiles of 
variable cross section. 
 

SUMMARY AND CONCLUSIONS 
 
This paper was intended to be an introduction to issues 

associated with the design of low- and medium-β 
superconducting structures.  Given the breadth of the 
subject it had to be selective and superficial.  It focused 
on the electromagnetic properties of TEM-class structures 
since those of TM-class structures have been addressed 
much more frequently in the literature [2, 3].  The 
mechanical design and mechanical properties of low-
velocity superconducting structures is another very 
important part of this field, but has not been addressed.  A 
considerable amount of information on this subject, as 
well as more in-depth discussions of electromagnetic 
designs can be found in [6] as well as other contributions 
to this workshop and other publications [8-20].   

For more than 30 years, the development of low- and 
medium-β cavities has been one of the richest and most 
imaginative area of srf.  Many types of cavities have been 
developed (helix, spiral, split-ring, quarter-wave, coaxial 
half-wave, spoke, etc.) and the field has been in constant 
evolution and progress.  New geometries have been and 
are still being developed to address the issues of new 
applications of the srf technology. 

What makes the low and medium beta region so 
interesting is that the parameter, tradeoff, and option 
space available to the accelerator structure designer is 
very large.  The geometries are more complex than in the 
β~1 region and the design process has not been and 
probably will never be reduced to a few simple rules or 
recipes.  The design of low- and medium-β 
superconducting structures still offer many opportunities 
for imagination, originality and common sense. 
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