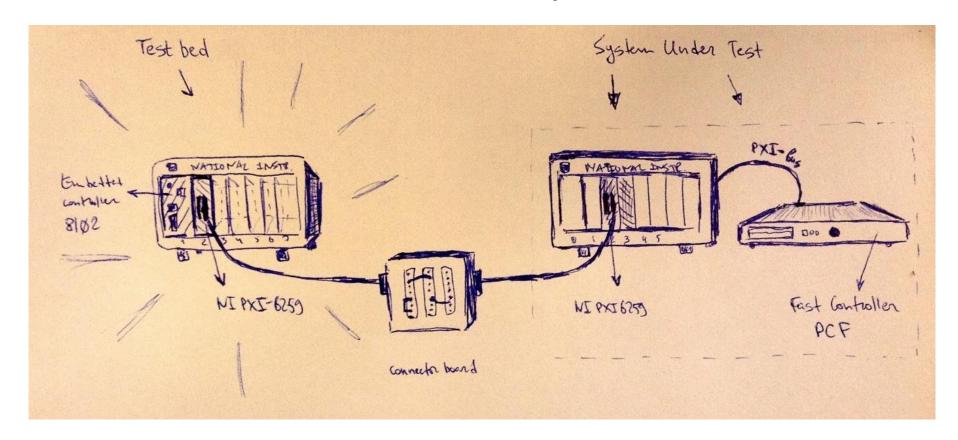
TestBed -- Automated Hardware-in-the-Loop Test Framework

COSYLAB

pavel.maslov@cosylab.com

Intro



- ☐ Control system updates (>3 times/year)
- DAQ hardware tests:
 - manual (+ precise; slow, infrequent)
 - automatic (+ fast, repetitive, liberating human resources)

HW architecture

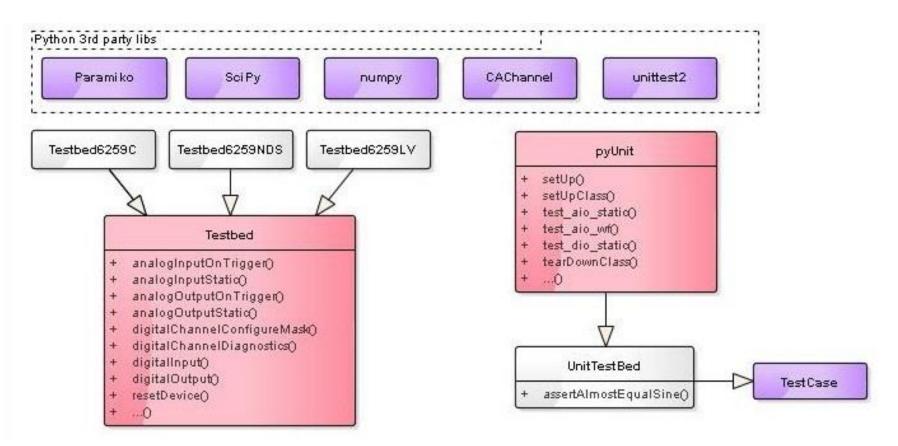
☐ TestBed chassis is attached to System Under Test

□ TestBed is running SL 6.3 and CODAC 4.1

SW architecture

- ☐ The software part consists of 3 tiers:
 - Software that provides the desired functionality of a DAQ board:
 - C executables
 - EPICS device support (NDS driver + IOC)
 - LabVIEW interface
 - Python bindings in the form of a class
 - Automatic test cases written by the test-plan engineer

DAQ functionality

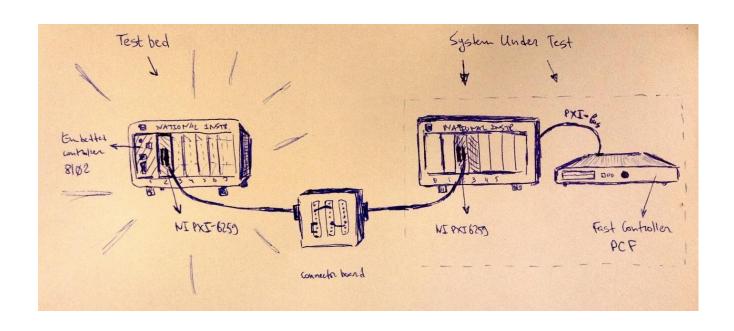


- ☐ The NI-PXI6259 functionality supported in TestBed:
 - Device reset
 - Digital input/output (static) on a desired line
 - DIO diagnostics: port mask and lines state
 - Configuration of the DIO port mask
 - Analog input/output (static) on a desired channel
 - Analog input (waveform) on a trigger
 - Analog output (waveform sine/saw/square/file) on a trigger

SW architecture

☐ Python class diagram:

Implementations



- C executables
 - Uses NI PXI-6259 Linux Device Driver (Cosylab)
- EPICS device support
 - Asyn based
 - NDS based
- ☐ LabVIEW
 - NI-DAQmx driver supports the full functionality
 - start an IOC in LabVIEW (using CA Lab by BESSY)

Test scenarios

- ☐ Generate on TB, acquire on SUT, check
- ☐ Generate on SUT, acquire on TB, check
- ☐ Generate on SUT, acquire on SUT


```
nn COSYLAB
```

```
☐class TestNI6259 (UnitTestBed):
 9
          # create SUT and Testbed
         TB = testbed()
10
11
          SUT = sut()
12
13
          @classmethod
14
          def setUpClass(self):
15
              # setup SUT
              self.SUT.server = "10.5.3.93"
16
17
              self.SUT.username = "bled"
18
              # setup TESTBED
19
              self.TB.server = "10.5.3.175"
20
              self.TB.username = "codac-dev"
21
22
         def setUp(self):
23
              self.TB.resetDevice()
24
              self.SUT.resetDevice()
25
26
          '''TESTING aio (static)'''
27
          def test aio static(self):
35
36
          '''TESTING dio (static)'''
         def test dio static(self):
37
45
46
          '''TESTING aio (waveform)'''
47
          def test aio wf(self):
67
68
          @classmethod
69
          def tearDownClass(self):
              self.TB.resetDevice()
70
71
              self.SUT.resetDevice()
72
              del self.TB
73
              del self.SUT
```

10 test aio static


```
'''TESTING aio (static)'''
26
         def test aio_static(self):
2.7
28
             # generate constant voltage on the TB, aol
29
             Vreg = random.uniform(-10,10)
30
             self.TB.analogOutputStatic(1, Vreg)
31
             # acquire voltage on the SUT, ai0
32
             Vact = self.SUT.analogInputStatic(0)
33
             # compare the results
34
             self.assertAlmostEqual(Vact, Vreq, 1)
35
```

11 test_dio_static


```
'''TESTING dio (static)'''
36
37
        def test dio static(self):
             # set do0 on the TB to a random state
38
39
             STreq = random.randint(0,1)
40
             self.TB.digitalOutput(0,STreq)
41
             # get di32 on the SUT
42
             STact = self.SUT.digitalInput(33)
43
             # compare the results
44
             self.assertEqual(STreq,STact)
45
```

```
'''TESTING aio (waveform)'''
46
        def test aio wf(self):
            sample rate = 500
48
            nsamples = 1024
49
            ampl = 2
50
51
            offs = 1
            phase = 1
52
53
            # delta = [offset, ampl, freq, phase] mV
            delta = [0.05, 0.05, 0.05, 0.05]
54
            # create a waveform
            wf out = self.TB.generateWaveform(sample rate, nsamples, "sine", ampl, offs, phase)
56
            # on a rising edge of pfil line generate wf on aol
57
            self.TB.analogOutputOnTriggerWF(1, sample rate, "pfi1")
58
            # on a rising edge of pfil line acquire wf on ai0
59
            self.SUT.analogInputOnTrigger(0, sample rate, nsamples, "pfi1")
60
            # trigger pfil
            self.TB.digitalOutput(0,1)
62
            # get waveform from SUT
63
            data = self.SUT.getAcquiredWaveform()
64
            # compare the results
65
66
            self.assertAlmostEqualSine(sample rate, nsamples, ampl, offs, phase, wf out, data, delta)
67
```


Your **TRUSTED** Control System Partner

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289485.

THANK YOU!

Pavel Maslov

COSYLAB

Tel.: +386 406 32 571

Web: www.cosylab.com

