

OpenGL-based Data Analysis in Virtualized Self-Service Environments

Viktor Mauch

Matthias Bonn, Suren Chilingaryan, Andreas Kopmann, Wolfgang Mexner, Doris Ressmann

Steinbuch Centre for Computing (SCC), KIT

Contents

Introduction

Motivation

Concept

Implementation

Conclusion & Outlook

Introduction

- Current analysis workflow for data produced by accelerator labs like ANKA has potential for improvements concerning *flexibility and comfort*. Current drawbacks are:
 - transfer, access and storage of huge data sets, up to several 100 Gigabyte
 - required amount of CPU and RAM resources
 - OpenGL/DirectX capable high-end GPUs for visual output, eventually also CUDA or OpenCL are necessary
 - expensive workstation licenses for commercial analysis software

use of standard end-user devices is not practical for data analysis operation of dedicated workstations for scientists is inevitable

Motivation

Therefore, we operate computing rooms with several high-end workstations for data analysis.

However, users have to ...

- rent time ranges for workstation usage
- be present locally
- contact an IT administrator for additional software (because of guest limitations)
- get along with higher background noise
- copy their data sets to the local hard drive

Furthermore, ...

- room place has to be reserved
- administrators have to provide support for additional hardware instances

automatic deployment of virtual machines (VMs) for users could improve this situation

Concept - Goal

Federal Ministry of Education and Research

ASTOR Project - "Arthropod Structure revealed

by ultra-fast Tomography and Online Reconstruction"

WP2: New <u>Analysis-as-a-Service</u> approach based on automatic deployment for VMs

Users should be able to ...

- manage their data sets and VMs via a web service
- request a VM on-demand with a corresponding configuration concerning CPU/GPU/RAM resources and software packages
- connect to the VM from any location via a network remote protocol which provides support for rendering and display OpenGL/DirectX visualization features.

Virtual Machines should ...

- automatically provide user specific network mounts to the corresponding data sets over fast interconnect technologies (10 GE / InfiniBand).
- contain **all relevant software packages** for analysis, activated via license servers
- have direct access to dedicated high-end GPU resources

Concept – OpenGL capable remote connections A

There are just a few complete solutions suites available for offering the provision of virtualized workstations for professional visualization applications:

- Citrix XenDesktop via HDX protocol
- Microsoft Hyper-V via RemoteFX protocol, since WinServer 2012 R2
- VMware vSphere & Horizon View via PCoIP protocol

All solutions are based on shared/dedicated GPU resources within the VMs:

	GRID K1	GRID K2
Number of GPUs	4 x entry Kepler GPUs	2 x high-end Kepler GPUs
Total NVIDIA CUDA cores	768	3072
Total memory size	16 GB DDR3	8 GB GDDR5
Max power	130 W	225 W
Board width	Dual slot	Dual slot
Display IO	None	None
Aux power	6-pin connector	8-pin connector
PCIe	x16	x16
PCIe generation	Gen3 (Gen2 compatible)	Gen3 (Gen2 compatible)
Technical Specifications	GRID K1 Board Specifications	GRID K2 Board Specifications

NVidia GRID K2 with 2 High-End Kepler Cores

Concept – Fast network Interconnect within VMs 🔼

To ensure data processing on remote network mounts, fast network technologies within VMs are necessary

- 10 Gbit/s Ethernet
- 56 Gbit/s InfiniBand

Hardware virtualized approach provides <u>near-native</u> network performance within a VM:

Single Root – I/O Virtualization (SR-IOV)

- A single PCIe network I/O device appears as multiple separate "Virtual Functions" (VFs)
- Each VF can be allocated to a VM via PCI passthrough
- Bypass of Hypervisor (Host-CPU) compared with software-based I/O virtualization

Implementation - Hardware

Viktor Mauch

Conclusion & Outlook

What we already have:

- Initial Placement Logic for VMs with dedicated PCIe devices (GPU and I/O) within a multi-host environment, important for IaaS Cloud Service
- Web-Portal with Authentication via Active Directory and local accounts
- On-demand deployment of VMs with dedicated GPUs via a web portal triggered by users
- Provision of pre-configured VM templates with the corresponding analysis software packages

What we will develop/provide in future:

- Integration of data set management into the ASTOR Portal
- Support of Shibboleth and other federated authentication technologies
- Evaluation of noSQL databases / alternative storage technologies for processing concerning performance and cost-benefit ratio
- Although we are just in the middle of the project funding period, our new analysis implementation of a novel analysis workflow is already a significate improvement compared to traditional strategy with dedicated analysis workstations.