

WEB BASED MACHINE STATUS DISPLAY FOR THE SIAM PHOTON SOURCE

N. Suradet, C. Thamtong, C. Preecha, S. Klinkhieo, P. Klysubun

SLRI, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand

ABSTRACT

A new machine operation status broadcasting system has been developed for Siam Photon Source (SPS), a 1.2 GeV synchrotron light source in Thailand. The system is implemented using web-based interface, and broadcasts the information over the SPS website, mobile application, as well as local TV network within the SPS facility, allowing users as well as technical personnel to easily access a variety of information related to the machine via web browsers and other mediums. The new system also provides supporting message services for alarm, event notification, and other operational necessities. In this report, the design of web and mobile applications, which are based on HTML5, CSS3, and adopts PHP, AJAX, Bootstrap framework (for responsive design), jQuery, High charts JS, Twitter widget, and others, will be described. The details of the hardware and software configurations, users requirements and satisfactions, as well as suggestions on further improvements, will be presented.

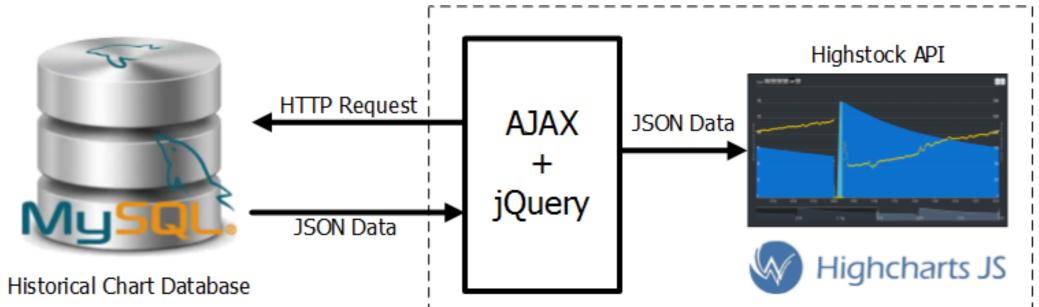
INTRODUCTION

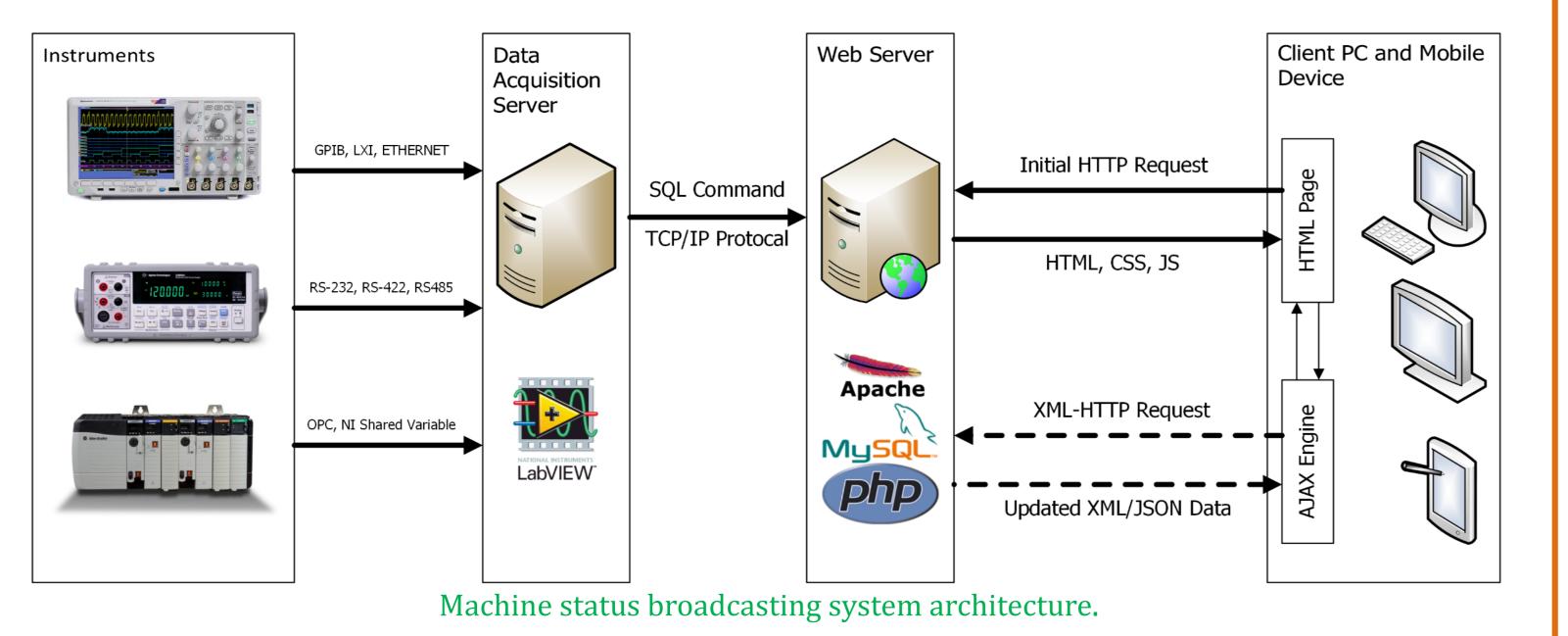
The original machine operation status broadcasting system was developed back in 2000, providing the operation status of the machine, for e.g. beam current, beam lifetime, beam energy, to users, who can access the provided information through the internal cable TV system within the facility. Each display channel receives the machine status data from a LabVIEW program located on a computer server. Since this system was available only for on-site users, another system was developed in 2006 to provide the machine status information via the internet. The fundamental language used to create this web-based system was basic static HTML. The displayed beam current and lifetime chart was captured from a NI LabVIEW window.

This web-based system has two main disadvantages. First, it consumes quite a bit of the network bandwidth because the whole web page had to be constantly updated, and the size of the chart image was quite large. Secondly, the system cannot display the data in real-time. We found it necessary to develop a new system that is more robust, more responsive, and more accessible.

SOFTWARE ARCHITECTURE

The machine status data originates from a variety of sources. These sources/hardwares are interconnected via an assortment of interface standards (OPC, GPIB, RS-232, etc.). A data logging program written with LabVIEW and installed on an acquisition server is employed to continuously gather all the machine data and log them into a database. The logging interval is 5 seconds. Open source database MySQL was chosen for our purpose. LabVIEW MySQL connector toolkit allows LabVIEW to communicate with MySQL (version 4.1 or later) via the TCP/IP protocol. It is a part of the LAMP (Linux-Apache-MySQL-PHP) platform that has to be installed on the web server.


Asynchronous communication with AJAX

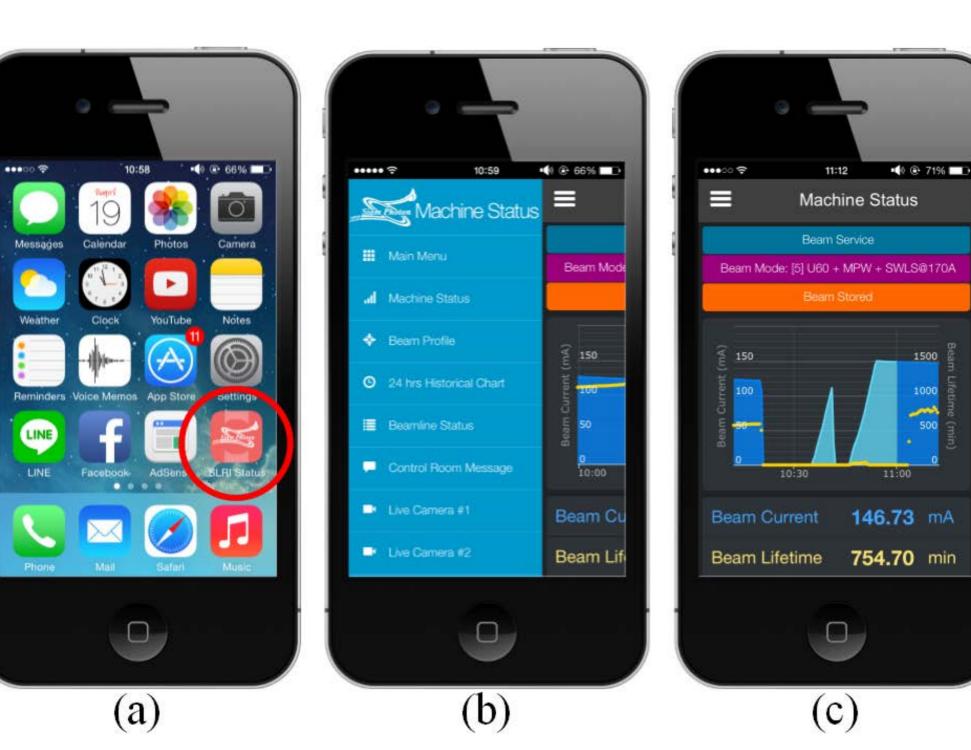

AJAX (Asynchronous JavaScript And XML) is a tool for creating fast and dynamic web pages. AJAX allows web pages to be updated asynchronously by exchanging small amounts of data with the server behind the scene. This means that it is possible to update specific parts of a web page without reloading the whole page, significantly reducing traffic load placed on both the server and the network.

Real-time graph with Highcharts JS

The SPS beam current and beam lifetime chart which shows a historical record over 24-hour period contains the recorded values of the beam current, beam lifetime, beam energy, and the associated timestamp. We use Highcharts JS, which is a JavaScript framework for creating charts.

Its process is performed client the side on (browser). A data buffer is created and stored in MySQL database the along with the associated timestamp, which is installed on the web server.

When the user opens the SPS machine status web page, the browser on the client side will make a request for the PHP webpage to the web server. The web server responds by sending HTML, JavaScript, and CSS scripts to the client for processing, so that the execution is performed by the client browser. We use AJAX (Asynchronous JavaScript And XML) to help refresh the web page for updating the data. AJAX runs a background operation which extracts the data from the database in the XML/JSON data format every 5 seconds. It updates the data field of the web page without reloading the


Software architecture of the auto-refresh real-time beam current and lifetime graphs.

Notification broadcasting with Twitter

Incorporating a notification broadcasting into the system was deemed necessary from the beginning since it would be the main channel facilitating the communication from the control room to the users. For this we chose Twitter.

MOBILE APPLICATION

An iOS web application was written for iOS-based devices. The web app can be installed from the Safari web browser, and can be accessed later from the iOS home page, as shown in (a). The program simply retrieves the machine data from the machine status webpage.

When the condition that the user agent is a mobile device is detected, the system will display a specialized frontend framework containing Slidebars the and а navigator menu, as in shown The (b). machine status display remains on Bootstrap as mentioned earlier; however, the information is separated into multiple pages to fit the screen resolution of the mobile device, as shown in (c).

whole page, thereby substantially reducing the traffic demand on the network.

DESIGN AND CODING

Frontend framework with Bootstrap

Regarding our aforementioned requirements that the new system has to be able to display the machine information correctly across all supported devices, and it must be relatively easy to develop, we employ the open source Bootstrap framework to help manage the front-end. The Bootstrap package includes Scaffolding, Base CSS, Components, and JavaScript plug-ins. It handles display duty across all the devices with multiple resolutions, making the machine status webpage display-responsive.

🔄 😤 aculator Kath inches data:		🖬 + Geogle	P 🤞 🗍 🏦	Ele Edit Yee History Societation		on the news
Synchrotron Light Research Institute (Public Organiz MACHINE STATUS	non) Beam Service Beam Mode: (*	5] U60 + MPW + SWLS@170A	Beam Stored	G entirete alice B harts		
	2000 Mile 1997 1997 1997 1997	Zoone West Title West 124 (1997) Through Nov 11, 22 (25-223) Through Nov 12, 23 (25-223)		Ser Sin	Synchrotron Light Research Institute (Public Organizatio	
Beam Current 140.48 m/	Thursday, Mar 13, 22 58-22 59			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ACHINE STATUS
Beam Lifetime 776.78 mi	Seam Lifetime: 872.20 min	and street and	1500		Beam Beam Mode. Service MPW + SWL	
	1 mil			Beam Curre	ent 139	.13 mA
Beam Energy 1.20 Ge	V			Beam Lifeti	me 791	.78 min
Beam Beam Position Size [mm] [mm] IMAGE NOT AVAILABLE			Beam E	Beam Ener	gy 1	.20 GeV
X XX.XX XX.XX	9 22'00 14 Mar 02'00	94'00 94'00	ax on	Beam Posit	ion Beam Size	
Y XX.XX XX.XX	1600	14. Mar		[mm]		IMAGE NOT
Current x Lifetime 109,125 mA.m	n Beamline Front-end Status	Tweets	M follow	X XX.xx	XX.xx	AVAILABLE
Beam Rate -0.155 mA/m	in BL1.3W: SAXS 2.18 T	Accelerator (juiture) Beam stored for users. Next intection on Friday 14	37m /	Y XX.XX	XXXXX	_
Integrated Dose 2,469.39 A.hr	BL2.2: Time-resolved XAS	at 08.00 p.m		Control Roper 1650, 1651	III MACHINE S	14 May 2014 09:18
U60 28.50 mm 0.52 Tesla	O BL3.2a, 3.2b; PES, PEEM 0.52 T	Accelerator gastrin Beam stored for users. Next injection on Friday,14	120 March 2014			
MPW 23,50 mm 2.18 Tesla	BL4.1: IR BL5. YAS ISHT, MANOTEC, SLBA	at 06.00 a.m				
Accelerator Technology Dusion II MACHINE STATUS U	NDER TEST !!!	14 M	ar 2014 09:10:39			

Machine status webpage at different screen resolutions.

Mobile application: (a) SPS machine status app icon, (b) Slidebars navigator menu, and (c) SPS machine status on mobile device.

CONCLUSION

The new SPS machine status broadcasting system has been in use for approximately 8 months since February 2014. The system is found to be robust, effective, and user-friendly. Future plan includes making it available for devices based on other platforms.

ACKNOWLEDGEMENT

The authors are thankful to all the members of Accelerator Technology Division and Technical Support teams for their support, constructive remarks, and feedbacks.

10th International Workshop on Personal Computers and Particle Accelerator Controls PCaPAC 2014, Karlsruhe, Germany, 14th - 17th October 2014

Nakhon Ratchasima, THAILAND

http://www.slri.or.th

FP0028