THE SOFTWARE AND CAPABILITIES OF DIAGNOSTIC SYSTEM FOR STABILITY **OF MAGNET POWER SUPPLIES AT NOVOSIBIRSK FREE ELECTRON LASER**

S.S.Serednyakov Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

Abstract

The magnetic system of Novosibirsk free electron laser (FEL), which contains a lot of magnetic elements, is fed by power supplies of different types. The accuracy and stability of the output current of these power supplies directly influences the coherent radiation parameters and operation of the entire FEL facility. In this connection, we developed a system for diagnostics of the power supplies state, integrated into the common FEL control system. The main task of this system is to analyze the output current of the power supplies and calculate their stability characteristics. Besides, this system is capable to determine the amplitude and frequency of output current ripples, if any, for a particular power supply and display obtained results. The main architecture and some other capabilities of this system, and presents examples of its usage are described here.

The main scheme of control and supply of magnetic elements of the microtron-recuperator CANBUS 300A, 1000A, 2500 A 3A, 10A, 17 A Multi-Channel Power supply racks Power supply racks ↓↓↓↓ **** ****

Table of requirements on current set-on accuracy and long-term stability for different types of power supplies used on Novosibirsk FEL :

PS type (by max. output current)	Set-on accuracy (% form Imax)	Long-term stability (% from Imax)				
3A	1.0	0.2-0.3				
10A	1.0	0.2-0.3				
300A,1000A	0.01	0.02				
2500A	0.01	0.01				

Different types of output current control methods and corresponding hardware and software algorithm

Output current control method	Operating mode of control devices(ADC)	Functionality of control software
Monitor current set-on accuracy	Standard multi-channel mode of measurement	Compare specified and measured current value in "real-time", during all time of operation of control software
Monitor current long-term stability	Standard multi-channel mode of measurement	Compare current value, measured just after specifying new one and last measured value at in "real-time", during all time of operation of control software
Detect single, short-term current deviations	Single-Channel mode of measurement, running on long time duration	Storing and displaying the output current waveform, obtained during single- channel measurement
Detect continuous output current ripples	Consistent series of single- channel measurements of output currents for all power supplies, connected to ADC	Consistent processing obtained waveform, calculating average current value, mean square deviation, and maximum deviation for all power supplies

Displaying status of all power supplies on main window of control program

During operation, control software calculates relative difference between specified and measured current value, same as difference between current value, measured just after specifying new one and last measured value for all power supplies.

	🔂 MSC - 25_0	4_05_10	60A.m	gd													-o×
	File Element	Operator	CAN	-BUS CA	A Server	Help	20MBM5	NO RE	SPO	NSE	20MBM	16 NO	RESPONS	E 4M	U1-2	NO RES	PONSE
	SEC01	10A	SECO	3	14A	SEO	205	10A	SEC	207	ЗA	SI	CO9	3A	SEC	11	3A
	00 EMPTY00	0	00 2	1MBM1	10.1	00	21MQ7	0.67	00	20MQ20)x 0.	78 00) 21MBM1_	y-0.00	00	1MQ2_Ку	-0.25
	01 EMPTYOO	1	01 E	MPTY03	3 0.00	01	21MQ10	0.97	01	20MQ2:	ly O.	56 0	L 21MBM2_	y-0.00	01	1MQ3_Kx	: 0.00
	02 EMPTYOO	2	02 2	1MBM2	10.3	02	21MQ8	1.61	02	20MQ22	2? -0.	50 02	2 1MXY6_X	0.00	02	1MQ4_Ky	-0.15
	03 EMPTYOO	3	03 E	MPTY03	5-0.00	03	21MQ9	0.12	03	21MQ1	x -0.	01 03	3 1MXY7_X	-0.05	03	1MQ5_Kx	: -0.00
	04 EMPTYOO	4	04 U	2Cor1X	0.00	04	4MB1	9.07	04	21MQ2_	у -0.	05 04	4 1MXY7_Y	0.11	04	1MQ6_K	0.12
	05 EMPTY00	5	05 U	1Cor2X	0.00	05	4MB1_K	-0.19	05	21MQ3	_x -0.	07 05	5 20MBM7_:	x-0.25	05	1MQ7_Kx	-0.00
	06 EMPTYOO	6	06 U	1Cor1X	0.00	06	20MQ23	-0.15	06	21MQ4	у O.	00 00	5 20MBM8_	x 0.00	06	1MQ8_Ky	-0.00
	07 EMPTYOO	7	07 2	OMBM5	K-0.01	07	20MQ23K	0.00	07	21MQ13	3x -0.	07 01	7 20MBM9_:	x-0.38	07	3MQ1_K	0.00
	08 EMPTY00	8	08 2	OMBM3-	4 5.12	08	20MQ24	0.00	08	21MQ1	4y -0.	28 08	3 20MQ1	0.94	08	ЗМQ2_К	-0.80
	09 EMPTY00	9	09 E	MPTY04	1-0.00	09	20MQ24K	0.00	09	21MQ19	5x -0.	12 09	9 20MBM1_:	x-0.00	09	1MXY0_X	0.00
	10 EMPTY01	0	10 E	MPTY04	2 4.83	10	20MQ25K	-0.09	10	21MQ10	6y -0.	25 10) 20MBM2_	x-0.00	10	1MXY0_Y	0.00
	11 EMPTY01	1	11 E	MPTY04	3 0.15	11	20MQ25	-0.00	11	1MXY4	_X 0.	24 1:	L 20MBM3_:	x 0.02	11	1MXY1_X	0.09
	12 EMPTY01	2	12 U	2Cor3X	0.00		20MBM10	5.88	12	1MXY4	Y 0.	18 12	2 20мвм4_:	x-0.20	12	1MXY1_Y	0.02
	13 EMPTY01	3	13 U	2Cor2X	0.00	13	EMPTY07	7-0.00	13	1MXY5	_x -0.	10 13	3 20MQ1_x	-0.06	13	1MXY2_X	0.17
	14 EMPTY01	4	14 U	1Cor?.	-0.00	14	EMPTY07	8-1.48	14	1MXY5	Y 0.	00 14	4 20MQ2_y	-0.00	14	1MXY2_Y	0.07
rence	15 EMPTY01	5	15 2	C.RD_K	-0.00	15	EMPTY07	9-0.01	15	1MXY6	Y -0.	00 15	5 20MQ3_x	0.18	15	EMPTY17	5 0.00
	SEC02	10A	CO2CO	4	10A	SEO	C06	10A	SEC	208	ЗA	SI	SC10	3A	SEC	12	3A
value.	00 1MBM1		00 E	MPTY04	8	00	20MQ19	-0.00	00	20MQ4	у O.	15 00) 1MQ2	-0.21	00	21MQ5_>	: 1.21
,	01 1MBM2		01 E	MPTY04	9	01	20MQ22	-0.00	01	20MQ5	_x 0.	20 0:	l 1MQ3	0.49	01	21MQ6_y	-0.26
ng	02 1 1 5M3		02 E	MPTY05	0	02	20MQ20	-0.00	02	1102	- 0	04 04			- 00		92
J	23 20MBM1-	2	03 E	MPTY05	1	03	20MQ21	-0.00	04	TMG2	- 0						30
wer	04 3MQ1		04 E	MPTY05	2	04	21MQ1	0.00	C 2	1MQ2_0)сновн	ая_об	омотка		Initia	al value :	10
	05 3MQ2		05 E	MPTY05	3	05	21MQ13	-0.00	C D	AC06 (hanne	106			-1.47	'6 A	09
WITN	06 1MS1		06 E	MPTY05	4	06	21MQ2	-1.48	C II	MAX) =	10.0 A	UMA	X) = 20.0 V				37
	07 1MS2		07 E	MPTY05	5	07	21MQ14	-0.26	0 -		1				î	Restore	<u> </u>
	08 1Ms3		08 E	MPTY05	6	08	21MQ3	-0.30	0	Degaus	S					Stop I	(A). 06
	09 1MS4		09 E	MPTY05	7	09	21MQ15	-1.56	0	n – 1.			Read DAC	Grap	h	Step I	(A). 04
	10 1MS5		10 E	MPTY05	8	10	21MQ4	0.23	1	n1.4	1700 A	_	1.00	J		0.0020	• 04
	11 1MS6		11 E	MPTYOS	9	11	21MQ16	2.28	1 lo	out =-1.	4819 A	F	(0 = 1.20)	Dhm	1.4	76	10
	12 1MS7		12 E	MPTY06	0	12	21MQ5	0.89	1 U	lout $=2.1$	9775 V	F	tout = -2.01	Ohm	-1.4	/6	JK 13
	13 1MS8		13 E	MPTY06	1	13	21MQ12	1.27	1	с. с. э		<u>`</u>					43
	14 EMPTY03	0	14 E	MPTY06	2	14	21MQ6	-3.12	1						Set 0	Clo	se 18
	15 20MBM7-	8	15 E	MPTY06	3	15	21MQ11	-2.43	15	20MQ19	9_y-0.	07 19	5 20MQ17=	1.31	15	1MXY3_Y	-0.02
	Beady										CAS	ON	DACs Online	9 (of 10)		AN Msg's	103

If calculated differ exceeds allowed string, representin corresponding pov supply is painted red color

Dialog window with waveform of single-channel measurement and spectrum of output current of specified power supply.

Waveform of output current of power

Dialog window with plot of results of cyclic single-channel scanning of output currents of all power supplies

To detect possible output current ripples, control software initiates cycle of single-channel measurements of output currents of all power supplies.

utScan Cycle Statistics Dialog

Max(dI) 🚺 sqrt(<I-<I>>)

During cycle, program switching to ADC channel, connected to current power supply, starting singlechannel measurement, obtaining number of measurements specified by user, processing obtained waveform, outputs resulting values to plot, and switching to next power supply.

Results, obtained after processing single-channel measured waveform for every power supply: Red v-bar shows maximum deviation of current from average current of obtained waveform, Blue v-bar shows mean square deviation of current values in obtained waveform

Number of power supply in whole list

Parameters of single-channel measurement : 1.Number of measurements 2.Time per one measurement

Waveform of output current of power supply currently scanned