

AN EXTENSIBLE EQUIPMENT CONTROL LIBRARY FOR HARDWARE
INTERFACING IN THE FAIR CONTROL SYSTEM

M. Wiebel, GSI, Darmstadt, Germany

Abstract
In the FAIR control system the SCU (Scalable Control

Unit, an industry PC with a bus system for interfacing
electronics) is the standard front-end controller for power
supplies. The FESA-framework is used to implement
front-end software in a standardized way, to give the user
a unified look on the installed equipment. As we were
dealing with different power converters and thus with
different SCU slave card configurations, we had two main
things in mind: First, we wanted to be able to use
common FESA classes for different types of power
supplies, regardless of how they are operated or which
interfacing hardware they use. Second, code dealing with
the equipment specifics should not be buried in the
FESA-classes but instead be reusable for the
implementation of other programs. To achieve this we
built up a set of libraries which interface the whole SCU
functionality as well as the different types of power
supplies in the field. Thus it is now possible to easily
integrate new power converters and the SCU slave cards
controlling them in the existing equipment software and
to build up test programs quickly.

INTRODUCTION
As GSI is building up the FAIR [1] project and thus

doing renovations all over the facility, it was decided to
build up a new control system for the accelerator. This is
done as a collaboration project with CERN. As part of the
new system, the FESA (Frontend Software Architecture
[2]) framework deals with all frontend related tasks.

To integrate our numerous hardware designs with the
framework, we decided to build up the FESL (Front-End
Support Library) as a lightweight approach to implement
flexible equipment interfacing.

This paper sketches the workflow developing a FESA

class and describes the challenges resulting from it. As a
consequence the requirements to the FESL are depicted,
followed by the description of the resulting structure of
our library. As a last part we discuss the usage of FESL in
the context of the FESA framework und give a short
outlook to the future development of the library.

USING THE FRONTEND CONTROLLER
As described in [2] the development of a FESA class

follows a specific workflow leading to a ready to use
equipment software. After designing the class in an XML

based document, one can automatically generate a set of
C++ source code frames. These frames are filled with
specific implementation and are compiled to a ready to
use FESA class. In the deploy unit one or more FESA
classes are linked with the run-time core to build an x86-
Linux executable. This executable can then be delivered
to a front-end computer of choice.

The FESA framework is designed to be flexibly

tailored to the broad range of equipment in the
accelerator, but due to its rather long development cycles,
it lacks the flexibility needed during an early development
phase. Especially in our case, as we often have several
variants of the devices. Writing test software for different
power supplies forced us to walk through the
aforementioned development process over and over
again. Several only slight differences in the equipment
behavior, led to an unwanted overhead of work and time.

REQUIREMENTS TO FESL
To cope with the above described limitations, we tried

to decouple the equipment specifics from the
implementation of the control system specific parts. Thus
we came up with several requirements we had for our
Front-end Support Library.

First of all it should unify and simplify the usage of the

different power converters we are addressing through our
front-end computers, namely the SCU (Scalable Control
Unit [3]). Being an industry PC with a bus system for
interfacing electronics, the SCU is used as the standard
equipment interfacing in the FAIR project. Power
supplies and other equipment are connected to it using
slaves of an internal bus.

Figure 1: Overall structure of the FESL.

Proceedings of PCaPAC2014, Karlsruhe, Germany WPO008

Control Systems

ISBN 978-3-95450-146-5

49 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

 Easy Testing
To ease the testing of the connected devices and to

decouple it from the need of embedding the equipment
into the control system, we split up the library into two
different parts (figure 1): One part to be used from inside
the FESA source code frame (accDevice) and the other
part to be used for dealing with the internals and the
slaves of the SCU directly (scu). The accDevice part
builds upon the scu part in a way, that it combines parts of
it to provide a more unified look on it from the FESA
class.

No Need to Know About Initialization Details
As a second point, we wanted to hide all the SCU

internal communication mechanics from the user of the
FESL. As a consequence, we decided to do all the
initialization of the different SCU bus slaves as far as
possible in an automized way.

Follow the Structure of the Hardware
Furthermore it was important for us, that the library

could be used in a very intuitive way. Thus the overall
design of the FESL reflects the structure of the hardware
found in the context of the SCU.

STRUCTURE OF FESL

Guided by our requirements, we designed the library
along the hardware to be represented. This led to an
intuitive and straight-forward model of our front-ends. As
mentioned before, the library is split up into two parts, the
scu part and a more FESA oriented accDevice part.

SCU Part of the Library

Figure 2 shows the SCU part of the FESL. The blue
box represents the etherbone bus [4], which is used to
communicate with all components of a SCU. On top of
that comes the part of all SCU internal components,

starting with the base class for all of them (Components).
By creating a Components-derived object all needed
initializations are done. This makes it easy to create new
component classes without deeper knowledge of the SCU.
Components which can be created so far are

• Component (base class)

• Display (internal display of the SCU)

• ScuBusSlave (base class for all SCU bus slaves)

• GPIO (general purpose IO)

Inheriting from Component, ScuBusSlave is the base
class for all cards which can be connected to the SCU via
the backplane. Again, the base class does all the
initialization needed to establish the connection.

AccDev Part of the Library

The accDev part builds on the SCU part and combines
the different bus slaves to real devices located in the
control system. Up to now, two types are supported:

• PowerSupplies

• RFcontrol

Figure 2: The SCU part of the FESL.

Figure 3: Device part of the FESL.

WPO008 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

50C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Systems

According to the idea that we wanted to be able to
control different variants of power supplies with one
FESA class (figure 3), they are all derived from the same
base class PowerSupply. This base class can be used
throughout the whole equipment software as an abstract
interface. During FESA instantiation it is decided which
power supply is actually connected and which
implementation should be used.

Fg implements the interface for power supplies driven
by a function generator, while Acu interfaces the so called
Adaptive Control Unit for ramped power supplies. Cry
again handles a different variant.

The Dummy class is used when there is no real power
supply to control. It reads from and writes to the hard
disk.

INTEGRATION WITH FESA
With the accDev part of the FESL at hand, we are now

able to easily exchange the different device variants used
in a FESA class. This allows us to operate multiple
variants of power supplies from within one and the same
equipment class.

Instantiating the Power Supply

During start-up, the FESA class reads the type of the
power supply from the so called instance file (an XML
file containing all the configuration details for a specific
device instance). With this information it instantiates the
according power supply from the FESL, which is then
used in the whole class via the PowerSupply interface. So,
what we did is injecting different equipment variants
using the configuration file.

CONCLUSION
With the introduction of the FESL we were able to

enhance our way of developing new equipment software
to a level that is now as flexible and lightweight as we
wanted. FESA as a framework for equipment interfacing
and integration into the control system, is still the way to
go, but can now be used with the presented flexibility in
the development process.

It’s now much easier to quickly write programs to
interact with the hardware. Furthermore we can extend
our library and thus can use new power supply variants
with one and the same existing FESA classes, which
saves a lot of time.

REFERENCES
[1] FAIR website: http://www.fair-center.de
[2] Solveigh Matthies et al., “FESA 3 Integration in GSI

for FAIR”, WPO006, Proc. PCaPAC’14,
http://jacow.org/.

[3] S. Rauch et al., “Facility-wide Synchronization of
Standard FAIR Equipment Controllers”, WEPD48,
Proc. PCaPAC’12, http://jacow.org/.

[4] M. Kreider et al., “Etherbone – A Network Layer for
the Wishbone SoC Bus”, WEBHMULT03, Proc.
ICALEPCS’11, http://jacow.org/.

Proceedings of PCaPAC2014, Karlsruhe, Germany WPO008

Control Systems

ISBN 978-3-95450-146-5

51 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

