
INTEGRATING SIEMENS PLCS AND EPICS OVER ETHERNET AT THE
CANADIAN LIGHT SOURCE

R. Tanner, S. Hu, G. Wright, CLSI, Saskatoon, Canada
E. Matias, Mighty Oaks, Victoria, Canada

Abstract

The Canadian Light Source (CLS) is a 3rd-generation
synchrotron light source on the University of
Saskatchewan Campus in Saskatoon, SK, Canada. The
control system is based on the Experimental Physics and
Industrial Controls System (EPICS) toolkit [1]. A number
of systems delivered to the CLS arrived with Siemens,
PLC-based automation. EPICS integration was initially
accomplished circa 2003 using application-specific
hardware; communicating over Profibus. The EPICS
driver and IOC application software were developed at
the CLS. The hardware has since been discontinued. To
minimize reliance on specialized components, the CLS
moved to a more generic solution, using readily-available
Siemens Ethernet modules, CLS-generated PLC code,
and an IOC using the Swiss Light Source (SLS)
Siemens/EPICS driver [2]. This paper will provide details
on the implementation of that interface. It will cover
detailed functionality of the PLC programming, custom
tools used to streamline configuration, deployment and
maintenance of the interface. It will also describe
handshaking between the devices and lessons learned. It
will conclude by identifying where further development
and improvement may be realized.

SYSTEM OVERVIEW
The general system overview is shown in Fig. 1.

Siemens PLCs from the S7-400 and S7-300 families have
been fitted with Industrial Ethernet modules.

These PLCs have been delivered by vendors. There are

two S7-300s for the storage ring SRF (Superconducting
Radio Frequency) cavity, one in the BR (Booster Ring)
RF controls, and S7-400s for the Linde Kryotechnik-
supplied cryogenics plant and SR (Storage Ring) Thales
RF amplifier.

At the time of this writing, EPICS integration of the
TUV-certified, failsafe PLCs used in the CLS Access
Control and Interlock System (ACIS) and O2 monitoring
is still under review.

Because the PLCs perform many critical functions, a
separate Virtual Local Area Network (VLAN) had been
dedicated for them (referred to as a “plantbus” by the
manufacturer), the EPICS IOC (Input-Output Controller)
and Engineering Stations (“ES”). Access to the PLCs is
meant to be accomplished only via the development
stations or the IOC. The ESs have an industrial Ethernet
adapter for connecting to the plantbus and commonly –
available adapter for connecting to the “office” network.
The IOC connects using the default VMWare Ethernet
adapter and is configured to be on the VLAN, as well.

Any other services are configured to be available to the
VLAN rather than accessible via a gateway or router (the
IOC also provides NTP, for example). Traffic is restricted
on the VLAN for performance and security
considerations.

Proceedings of PCaPAC2014, Karlsruhe, Germany WPO001

Control Systems

ISBN 978-3-95450-146-5

31 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

IOC
The IOC is running as an Intel-based, virtual machine

(VM) on an ESXI VMWare. The O/S is Red Hat Linux
7.2 (Enigma).

The SLS Ethernet driver and IOC application were
compiled against EPICS 3.14.6. All PLCs can be
interfaced with a single IOC application, or a specific app
written for each PLC or any combination thereof. The
CLS will likely move to one IOCapp/PLC; which is more
modular and fault-tolerant.

The IOC application was modified slightly to include a
synchronization step with the PLC before it is allowed to
set values in the PLC.

PLC CODE
The PLC code is written using Siemens PCS 7; which

provides a number of development languages ranging
from an Assembly-like option called Statement List
(STL), a Pascal-type language called Structured Control
Language (SCL) and graphical languages including a
Ladder Logic offering (LAD), Function Block Diagram
(FBD) as well as higher-level languages such as Sequence
Function Chart (SFC) for state logic programming and
Continuous Function Chart (CFC), the language used for
safety system programming.

The PLC side of the EPICS interface was written using
SCL.

Functions
All the code and variable definitions are contained in a

single SCL file. Comments indicate where automatically-
generated code is to be inserted.

The CLS PLC code consists of four functions;
IE_COMMS, CHECKSYNC, PACK_TX_DB and
UNPACK_RX_DB. The core functionality is handled by
the IE_COMMS function.

IE_COMMS calls PACK_TX_DB which copies data
from various internal memory areas to a buffer (IE_TX).
The data consists of all the values meant to be sent to the
IOC as well as the current values the IOC is interested in
setting (readback values). IE_COMMS then calls the
SEND function and waits for it to return. Upon return, it
logs any errors and starts the process again. A watchdog
timer will also restart the procedure if SEND times out.

IE_COMMS also monitors the RECEIVE function
watching for the arrival of data. Before the IOC can
manipulate data in the PLC it must synchronize with it by
demonstrating it has the current values of the variables in
question. When data first arrives, if the SYNC flag is not
set, IE_COMMS calls CHECKSYNC. If CHECKSYNC
succeeds, the SYNC flag is set and UNPACK_RX_DB is
called which moves data from IE_RX to the internal PLC
locations using a combination of pointer-based and
explicit transfers as outlined below.

As with the SEND function, errors are logged before
preparing for the next packet of data.

Data Transfers
Transfers are accomplished either by explicit

assignments or pointer-based operations. Explicit
assignments are simple Var1 = Var2 statements (i.e.
“IE_TX.DBD8 := DB4.DBD12;” copies the double word
at offset offset 12 of datablock 4 to IE_TX at offset 8).

In cases where a number of variables are adjacent in a
contiguous section of memory, it is convenient and
simpler to call the BLKMOV function (analogous to
memcopy in C) which takes “ANY pointers” as source
and destination parameters. ANY pointers are 10 bytes
long and contain fields for the length of the data to copy,
the memory area (i.e. input, output, global memory,
datablock, etc), the datablock number (if applicable) and
the bit offset in that memory area to start the copy. For
example, if 16 boolean values, 4 integers and 6 floating
point values were located in a single datablock starting at
byte 4, they could be copied in a single statement using
the pointer, “P##DB2.DBX4.0 BYTE 34”.

In order to access the fields of the ANY pointer, a User
Data Type (UDT) is defined (called AnyPoint) that
specifies the pointer layout. The UDT is then associated
with ANY pointers in a manner similar to a union{} in C
as follows:

BUFFER_TX: AnyPoint; // UDT
ANY_SRC at BUFFER_TX: Any; //POINTER

For both PACK_TX_DB and UNPACK_RX_DB, a list

of pointers is maintained in datablocks (DBs) named
DB_TX_PTRS and DB_RX_PTRS, respectively. The
pack and unpack functions iterate through the pointers
performing the pack or unpack operations as required.

The IE_TX and IE_RX buffer are also datablocks.
Datablocks (DB) are user-defined records analogous to a
C struct{}.

SYMBOL MAP
The PLCs delivered as part of larger systems do not

generally have internal symbols which adhere to the CLS
naming convention. Therefore, a symbol map of each
PLC is manually generated mapping the internal symbol
name to the CLS-defined PV name. It also includes the
internal (PLC) address of the variable, its offset in the TX
or RX buffer, the description, type of transfer (Explicit or
Pointer) as well as a number of EPICS-specific
definitions required for the substitution files.

Scripts
Adding or inserting another process variable (PV) to

the map requires a lot of manual editing for both the IOC
and the PLC, which is painstaking and leads to errors.
The symbol map was built in MS Excel which provides
an interface for automation. VBA scripts were written to
generate EPICS substitution files for the IOC as well as to

WPO001 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

32C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Systems

generate Siemens SCL code to be copied in to the
environment for compilation.

The scripts are in a relatively primitive stage (i.e. not
very flexible and with minimal exception-handling) but
even so, have proven to save time and significantly
reduce clerical errors.

LESSONS LEARNED
IE_TX and IE_RX have four-byte headers followed by

the data. One has to be cautious of relative vs absolute
offsets. Byte 0 of the PLC IE_TX data is byte 4 of the TX
DB (and of the IOC input buffer).

The CLS implementation allows the PLCs to transmit
as fast as they can (rather than on a set period). The S7-
400s turned out to be too fast; flooding the data archiver
and causing jarring updates on the display(s). An input
parameter was added to allow for an additional delay
interval.

Some systems come complete with an HMI.
IE_COMMS has a Boolean input (LOCAL/REMOTE). If
the parameter is set to LOCAL, IE_COMMS will not
unpack IE_RX. It will however, keep the IOC updated via
the readback values in IE_TX.

PLC timers are explicitly defined. One must be careful
that timers used for the EPICS functions, are not assigned
elsewhere.

The use of pointers is notoriously wrought with pitfalls
and ANY pointers are no different. One must be diligent
with respect to data types (integer vs word) because the
PLC compilers are less flexible, forcing the developer to
be precise regarding definitions.

The PLC user code/compilers allow direct access to
digital values (i.e. the 3rd channel of a digital input card
starting at address 4 would be “I 4.2”). To accommodate
such addressing, the ANY pointer offset is a bit offset. To
refer to byte 4, the ANY offset would be set to 32 (or
rather 20, because it is a hex value).

As with data types, the format of some function
parameters must be explicitly defined and are dependent
on the language in which the function is being used. For
example, a 3-second timeout in CFC is represented as
“3s” whereas in a LADDER diagram it would be
specified as “S5T#3S”.

The vendor-supplied PLC RECEIVE function expects
periodic refreshes from its connection partner. This acts as
a heartbeat to confirm that the other device is still
connected and functioning. If it does not get them, it
assumes an error. Because the IOC driver only sends data
when there are updates, the PLC throws multiple
errors/second. As a workaround, logging of that error has
been commented out of the code.

FUTURE DEVELOPMENT
Currently, the SYNC flag is only reset when the

watchdog timer expires or when the PLC is restarted. A
slightly more robust realization could result if the EPICS
driver sent periodic updates as expected by the RECEIVE
function (rather than only when it has new data for the

PLC). A loss of communication could reset the SYNC
flag and logging of these events reintroduced to provide
potentially useful insight in to how often that occurs.

Significant convenience would be realized by having
the IOC populate the TX and RX pointer tables. This
would completely remove all EPICS configuration from
the PLC, limiting modification to the addition of the code
and DBs required for communicating with the IOC. It
would remove a lot of the manual work that is still
required on the PLC end of configuration.

Having systems delivered with symbols already named
in accordance with a naming convention would permit
that table to be exported to the Symbol Map. Building the
Symbol Map is the largest effort in the current work flow
so improvements here have the biggest impact.

CONCLUSION
The use of SCL greatly simplifies integration with

existing projects irrespective of the tools used to develop
them. It similarly simplifies uploading an existing PLC
binary, compiling the EPICS-specific blocks in to the
code and downloading to the PLC, which is most often
the case for vendor-supplied automation.

To date, four vendor-supplied PLCs have been set up to
use the CLS-modified SLS driver for interfacing with
EPICS with a fifth being targeted for our 2014 fall
shutdown. A very small amount of data has been written
to the PLCs from EPICs, with considerably more planned
in the future. A larger amount has been read out from
them. The SLS driver, IOC application and CLS-
developed PLC code has not required any modification or
debugging since installation. The combination has proven
stable over more than a year of deployment.

The investment in development time has simplified
future installations, eliminated the reliance on exotic
hardware, reduced implementation time and clerical
errors as well as enhancing performance.

ACKNOWLEDGMENT
The CLS gratefully acknowledges the contributions of

its operating funding partners:
 University of Saskatchewan (UofS)
 Canadian Foundation for Innovation (CFI)
 Canadian Institutes of Health Research (CIHR)
 National Research Council (NRC)
 Natural Sciences and Engineering Research

Council (NSERC)
 The Government of Saskatchewan
 Western Economic Diversification (WD)

REFERENCES
[1] http://www.aps.anl.gov/epics
[2] http://epics.web.psi.ch/style/software/s7plc/s7plc.html

Proceedings of PCaPAC2014, Karlsruhe, Germany WPO001

Control Systems

ISBN 978-3-95450-146-5

33 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

