|
The Muon Ionisation Cooling Experiment (MICE) being constructed at STFC’s Rutherford Appleton Laboratory will allow scientists to gain working experience of the design, construction and operation of a muon cooling channel. Among the key components are a number of superconducting solenoid and focus coil magnets specially designed for the MICE project and built by industrial partners. During testing it became apparent that fast, real-time logging of magnet performance before, during and after a quench was required to diagnose unexpected magnet behaviour. To this end a National Instruments Compact RIO (cRIO) data logger system was created, so that it was possible to see how the quench propagates through the magnet. The software was written in Real-Time LabVIEW and makes full use of the cRIO built-in FPGA to obtain synchronised, multi-channel data logging at rates of up to 10kHz. This paper will explain the design and capabilities of the created system, how it has helped to better understand the internal behaviour of the magnets during a quench and additional development to allow simultaneous logging of multiple magnets and integration into the existing EPICS control system.
|
|