

Rapid Cycling Dipole Magnet

Holger Witte, Scott Berg, Paul Kovach, Mike Anerella Brookhaven National Laboratory

> Mauricio de Lima Lopes Fermi National Accelerator Laboratory

Overview

Motivation

Materials

• Performance

Losses

• Engineering

19 September 2013

Rapid Cycling Synchrotron

- Final acceleration Muon Collider: RCS
 - Interleaved cold and warm dipoles
- Warm dipoles: correct average bend field
 - must change rapidly (>400 Hz)
- Maximum warm dipole field: significant impact
 - Larger energy range
 - Higher maximum energy

Momentum Ratio

- Shorter circumference
- Fewer accelerator stages

3

Magnet Geometry

- Good field region
 - Horizontal: 60 mm
 - Vertical: 10 mm
 - Aperture: 60x13 mm²
 (option: 60x25 mm²)

463 mm

- Geometry
 - Allows to use two different materials
- Combine advantages of materials
 - Pole: FeCo
 - Yoke: 6.5% SiFe

Gap: 13 mm Pole width: 102 mm

Materials

- 6.5% SiFe
 - Low losses at high frequencies
 - High permeability
 - Low saturation
- FeCo
 - High saturation
 - Higher losses
- Combine strengths of both

Materials - Core Losses

Field Quality

Field Quality

Dipole field: 2T Gap: 13 mm

Field Quality

Gap: 25 mm

Coil

- Eddy current losses
 - Conductor shape

Coil

- Eddy current losses
 Conductor shape
- Conductor geometry
 - Copper sheets
 - 80 mm wide, 1 mm thick
 - Insulation: 25 µm thick
- Coil position
 - Field leakage from yoke
 - Optimized to minimize dB/dt
- Losses: evaluated using FEA
 - 500 kW for all dipoles in ring (2T, 2 km length)
 - 400 Hz pulse, 15 pulses per second

Total Power Loss

Engineering

Engineering

Cooling

- Coil
 - 250 W/m in total (2T)
 - Cooling: outer faces
 - q < 0.1 l/s
- Finite element simulations

– Temperature gradient: <2K</p>

Cooling Yoke

Total average power dissipation: 500 W/m

▲ 25.388

25

20

15

10

5

■0 ▼ 2.3754×10⁻⁴

Heating Core

297.81 297.57 297.33 297.1 296.86 296.62 296.38 296.14 295.9 295.66 295.42 295.18 294.94 294.7 294.47 294.23 293.99 293.75 293.51 293.15

▼ 293.15

ΔT<5K

Conclusion

- Concept of dipole magnet

 Combines strength of two materials
- Performance
 - Good field quality up to 2T
- Power losses
 - Acceptable losses at 400 Hz (2T: 1.5 MW for ring)
- Engineering concept
 - External clamp to deal with forces
 - Cooling seems manageable
- Planned: test magnet system
- Future work: activation studies

Acknowledgements

- The authors would like to acknowledge fruitful discussion and support from
 - Carsten Bach, Vacuumschmelze
 - Hironori Ninomiya, JFE Steel Corporation
 - Rob Riley, Fermilab
 - Don Summers, University of Mississippi
 - John Zweibohmer, Fermilab