Completion of the first SSR1 cavity for PXIE

Design, Manufacturing and Qualification

Leonardo Ristori

on behalf of the

Fermilab SRF Development Group

Project X at Fermilab

Project X and PXIE

The *Project X Injector Experiment (PXIE)* facility is under construction at Fermilab and will serve in the next years as a test bench for key components of Project X to reduce risk

One cryomodule with 8 *SSR1* resonators is part of PXIE

SSR1 Cryomodule

SSR1 – 325 MHz, 2K

	SSR1
β	0.222
E _p /E _{acc}	3.84
B _p /E _{acc}	5.81 mT/(MV/m)
Aperture	30 mm
Diameter	492 mm
L _{EFF} (βλ)	205 mm
G	84 Ω
R/Q	242 Ω
Oper. Gradient	12 MV/m
Q ₀ at E _{acc}	> 0.5 10 ¹⁰
Operating B _{MAX}	70 mT
Operating E_{MAX}	46 MV/m
Tuning constant	40 N/kHz
Sensitivity	< 25 Hz/torr
P (RT, CT)	2 bar, 4 bar

Sensitivity to He pressure variations

Pressure of L_{He} can vary by ± 0.5 Torr in the cryomodule

SSR1 must operate within a small bandwidth ± 20 Hz

A self-compensating design was developed allowing low sensitivity

Despite non-negligible deformations (see picture), net shift is very low thanks to Slater's Theorem

Bare cavity ~ 600 Hz/Torr, with He vessel ~ 10 Hz/torr

Ease of tuning 39 N/kHz (bare), 40 N/kHz (with He vessel)

 Deformations in high E and B regions balance out resulting in a small frequency shift (Slater's Theorem)

SSR1 Fabrication (Niowave, Roark)

10 SSR1 resonators manufactured in US industry

Brazed transition rings (ANL, Roark)

Two different joint designs investigated

courtesy: W. Toter (ANL)

Issues: Vacuum Flanges

共

- SSR1 uses ConFlat-type flanges
- A. Rowe, C. Crawford

courtesy:

- Sealing unreliable/non-repeatable
 - Rough Machining, Damages
- Generators of Cu-particulates
 - "serrated" knife edges able to peel copper pieces from gasket when disassembled

- this seal is widely used in SRF field
- simple machining of flange, easy to repair

Magnification of a knife edge showing extensive damage

Magnification of a copper gasket after disassembly. The imprint left by the knife edge shows rough machining grooves.

ConFlat-type vacuum seal

Aluminum Hex Seal

Issues: Electron-Beam welding

- Weld blow-throughs observed in 4 resonators
 - no signs of machine faults or power supply issues
- Extensive studies lead to abatment of events
- New process parameters developed.
- Cause attributed to <u>weld bead instability</u>
 - A thinner bead, faster feed-rate and extreme attention to alignment of parts eliminated occurrences in the last 4 cavities.
- Repairs performed meticulously, cavities tested successfully

Typical holes on full-penetration welds

Extensive EBW tests on Nb cylinders

Machining of plug (top); weld repair from RF-side

Processing/Testing steps (ANL, FNAL)

- Inspection RF & Optical
- BCP 120-150 µm (flip half-way)
- 3. HPR
- 600 °C, 10 h (< 5°C/min ramp rate)
- **RF** Tuning
- BCP 20-30 µm
- HPR (horiz + vert)
- Assemble
- Evacuate + 120 °C, 48 h
- 10. Vertical Test
- 11. Helium Vessel Dressing
- 12. HPR
- 13. BCP 20-30 µm
- 14. HPR
- 13. Assemble
- 14. Evacuate + 120 °C, 48 h
- 15. Horizontal Test
- 16. Ready for String

courtesy: A. Rowe

VTS Qualification – 8 qualified

Example of S108 – 1st and 2nd pass

courtesy:
A. Sukhanov

Issues - Multipacting Barriers

Two multipacting barriers have been experienced at 4-5 MV/m and 6-7 MV/m Multipacting simulations are in fair agreement with measurements

courtesy:
A. Sukhanov

Multipacting Processing vs. 120C Bake

Jacketing Operations (Meyer Tool)

Shifts caused by jacketing

First SSR1 Cavity for PXIE

Measurements of Sensitivity

- Pressure in He space was cycled between 0-1.5 atm using Nitrogen
- Frequency measurements taken at different pressure increments
- Dial indicators provided valuable information for calibrating our model

- + 10 Hz/torr (free)
- + 4 Hz/torr (with dummy tuner)
- Requirement is < 25 Hz/torr

courtesy: D. Passarelli

The double-lever tuner

2ndArm x2 Piezos Motor Piezos x2 Amin Probe x2 Cavity

Coarse Range	135 kHz (0.25 mm)
Motor F _{MAX}	1250 N (1:6)
Fine Range	1 kHz (2 μm)

Summary and Outlook

- 10 Production SSR1 received (8 needed for 1st CM)
- EBW holes repaired, process improved
- Decision to modify flanges from ConFlat to Aluminum Seal
- 8 Cavities qualified for PXIE SSR1 Cryomodule
- First Jacketed cavity received, sensitivity meets requirements

Next:

- Qualification of Jacketed SSR1's
- Manufacturing of SSR1 Cryomodule