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Finally, in the Tradition of Galileo,
Newton, Leibniz, Euler, Lagrange,
... and in Gratitude for the
Universe, thanks to its Maker:



If the doors of perception were cleansed, everything
would appear to man as it is, infinite. William Blake



What is a Lie algebra? Algebra
involves addition and
multiplication. A Lie algebra is

* Alinear vector space (generalizes concept of

addition)

* Equipped with a multiplication (Lie product) rule,

denoted
1. [f,g]=-

oy [*,*], having the two properties
8,f]

2. [f,[g,h]]+[g,[h,f]]+[h,[f,g]]=0
(Jacobi identity)



Hamiltonian Mechanics Has a Lie
Algebraic Structure

* Functions f on phase space form a linear
vector space (they can be added).

* Define the Lie product of any two such vectors
(functions) f and g by the Poisson bracket rule

[f.81= Y{(3f /dg,)(0g / 3p,)

—(df /dp;)(0g/0q,)}



Definition of Lie Operator :f: that acts
on functions g

= D A0 199,91 dp,)
_(af/api)(a/aql')}
fg=g

:f:g=[fag]
:f:28=[fa[fag]]



Lie operators do not commute, but
their commutator is again a Lie
operator. Introduce the notation
{:f:,:g:}=F:g:-2g o
Then, from the Jacobi identity,
there is the result

{:f:,:g:}=:[f,g]:



Definition of Lie Transformation

exp(:f:)=2:=0:f:” /n!

exp(: f )g=g+Lf.gl+1/f.1f,8]/2+...



Given phase-space variables z=(q,p), a
Hamiltonian H(z,t), and initial
conditions z'", there is a transfer map
M such that the final conditions z™
are given by the relation
zﬁn =|v|zin.

M obeys the equation of motion
dM/dt=M:-H:. (1)



Factorization Theorem:

Given any transfer map M arising from
a Hamiltonian, it can be written
uniquely as a product of Lie
transformations in the form

M=exp(:f 1:)exp(:f 2:)exp(:f 3:)...(2)

where the f_m are homogeneous
polynomials of degree m.



In the context of Accelerator
Physics the polynomials f m have
the following significance:

f 1 describes misalignment, misplacement, and
mis-powering errors

f 2 describes linear transformations R=exp(:f 2:)
such as produced, in the linear approximation, by
drifts, quadrupoles, and dipoles

f 3 describes sextupole effects
f 4 describes octupole effects, etc.



Lie Algebraic Calculus for Manipulating
(Inverting and Multiplying) Maps: If
M=exp(:f:)
then
M- =exp(-:f:)

Also,
exp(:f:) exp(:g:)=exp(:h:)
with
h=f+g+(1/2)[f,g]
+(1/12)([f,[f,g]]+[g,[8,f])+...



Applications

* Concatenation: Given the maps for individual
beam-line elements, they can be multiplied
together to find the map for a full beam line
for a linac, or the one-turn map for a ring.

* Normal Form: Suppose M is the one-turn map
for a ring, and the tunes are not resonant.
Then there exist maps A and N such that

N=AMA-
and N has a simple (normal) form.



The Normal Form Procedure is the
Nonlinear Generalization of Matrix
Diagonalization

* The normal form map N contains all information
about tunes, anharmonicities, and chromaticities.

* The transforming/normalizing map A contains all
information about closed-orbit distortions and
inear and nonlinear lattice functions.

* From/with A one can also manufacture matched
oeams (including nonlinear effects) and nonlinear
generalizations of the Courant-Snyder invariants,
and examine tracking data for KAM tori.




Computation of Maps

Suppose the Hamiltonian for a beam-line
element has the expansion

H=H 2+H 3+H 4+..

Then, from the equation of motion (1) for M and
for the factorized representation (2) for M, it
follows that there are equations of motion for
R=exp(:f_2), the linear part of M, and for the
nonlinear generatorsf 3, f 4, etc. These
equations involve the H_m, and integrating
these equations yields M.



Accurate Computation of M for
Realistic Beam-Line Elements

* Consider, for example, the case of magnetic
elements. Analogous results hold for
electrostatic and RF elements.

* Need to know the H_m, which entails knowledge
of the vector potential and its derivatives.

* But, in general, B field is only known numerically
(with the aid of some 3-D solver) on a collection
of grid points. How can this data be used to find
the H m?



Surface Methods to the Rescue

* Cannot apply numerical differentiation to the grid
data because numerical differentiation is
intolerably sensitive to (amplifies) numerical
noise.

* But, Maxwell’s equations are smoothing: Interior
data in a volume V can be computed from data
on a surrounding surface S and, thanks to
smoothing, this interior data and its derivatives
are relatively insensitive to noise in the surface
data. The smoothing provided by the use of
surface methods overcomes the amplification of
noise associated with differentiation.



Application to Straight Beam-Line
Elements

* Surround the beam with an imaginary cylinder
fitting within the beam-line element and
extending beyond the fringe-field regions at the
ends.

* Extrapolate the grid data for the interior B field
onto the surface of the cylinder, and from this
surface data compute the interior vector
potential and its derivatives to yield the H_m.

e Compute M from these H_m.



An elliptical cylinder, centered on the z-axis,
fitting within the bore of a wiggler, and extending
beyond the fringe-field regions at the ends of the
wiggler.



Application to Curved Beam-Line
Elements, e.g., Dipoles with Large
Sagitta

* Surround the beam with an imaginary bent box
fitting within the dipole and having straight legs
extending beyond the fringe-field regions.

e Extrapolate grid data (now for B and the related
scalar potential for B) onto the surface of the box
and its straight ends, and from this surface data
compute the interior vector potential and its
derivatives to yield the H _m.

* Compute M from these H_m.



, and having

A bent box, fitting within a dipole

straight end legs that extend beyond the fringe-
field regions at the entry and exit of the dipole.



Conclusion

* Lie methods provide a powerful unified approach
to both linear and nonlinear behavior.

* Using Lie and surface methods, it is now possible,
for the first time, to compute accurate high-order
transfer maps for realistic beam-line elements
based on 3-D field data provided by a 3-D
numerical field solver. So doing includes all
fringe-field and multipole error effects.



