

Superconducting rotating-gantry and other developments at HIMAC

National Institute of Radiological Sciences (NIRS)

2013/10/4

- Introduction
- Recent developments
 - Scanning irradiation
 - Multiple-flattop operation
 - Superconducting rotating-gantry
- Summary

Introduction

Carbon radiotherapy

- Heavy Ion Medical Accelerator in Chiba (HIMAC)
- Ion species: p ~ Xe
- E/A=800 MeV for q/m=1/2
- Cancer treatments using energetic carbon ions
- Successful clinical results
 - √ ~7000 patients

New treatment facility

Construction completed in FY2010

3 treatment rooms

Room E & F
 Fixed H&C scanning ports
 (in treatment operation)

Room GRotating gantry port(Under construction)

Treatment floor (B2F)

Recent developments #1 (Scanning irradiation)

3D raster-scanning irradiation

How can we fix it?

Rescanning

Fast rescanning (scanning speed should be much faster than target movement),

This is like...

"Respiration gating" × "Fast rescanning"

Respiration gating

Moving target

By monitoring patient's respiration, errors in dose distribution can be reduced!

Fast rescanning

Comparison between fast rescan and conventional scanning

Recent developments #2 (Multiple-flattop operation)

Depth-dose distribution

Conventional synchrotron operation

- Fixed operation cycle
- Single energy

Energy degrader has to be used

- Enlarge a size of beam spots
- Produce fragments

For scanning irradiation....

- To take full advantage of the scanning irradiation,
 - beam energy has to be changed directly from

Multiple-flattop operation

- Operation pattern having multiple flattops
- Each flattop can be extended

t (ms)

Beams having various energies can be extracted!

Operation with 11-flattop pattern

Operation with 11-flattop pattern

Full energy scanning

Beam energy is varied by 1 or 2 mm step

in water range

E=430 – 56 MeV/u

- 201-flattop pattern
- No energy degrader

Beam acceleration and extraction tests

Current pattern of BM■

Scanning magnet (X)

Scanning magnet (Y)

Extracted beam

Beam current in ring

Irradiation gate

Energy ID

20

Recent developments #3 (SC rotating-gantry)

Needs for a rotating gantry

Irradiation with the existing fixed port

NIRS HIMAC Rotating gantry for carbon therapy

- Only one gantry in the world
 - Heidelberg Ion Beam Therapy Center (HIT)
- Size and weight

- Radius: 6.5m

- Length: 25m

- Weight: 670t

(Rotating part: 600t)

Superconducting rotating-gantry

NIRS

Use of superconducting (SC) magnets

Ion kind : 12C

Irradiation method: 3D Scanning

Beam energy : 430 MeV/n

Maximum range : 30 cm in water

Scan size : $\square 200 \times 200 \text{ mm}^2$

Radius : 5.45 m

Length : 13 m

The size and weight are comparable to those of proton gantries!

Layout of the SC gantry

Beam optics design

Beta and dispersion functions

Beam envelope functions with kicks of scanning magnets

26

Comparison in size

HIT gantry

NIRS SC-gantry

Development of curved SC magnets

SC magnet (BM02-05)

Cross-sectional view

Design of SC magnets V

Beam tracking simulations

Beam tracking to the isocenter

- Field map data (from Opera-3d code)
- Numerical integration of equation of motion

(4th order Runge-Kutta method)

Beam profile at isocenter

- Kick angle of scanning magnets: varied
- 81 spots at isocenter

Beam tracking simulations

Beam profile after correction with the scanning magnets

Beam tracking simulations

Beam profile after correction with the scanning magnets

Construction and tests of SC magnets

Rotation tests

- Model SC magnet (Toshiba corp.)
- Rotation over ±180 degrees
- Appling maximum coil-current

No quench observed!

Construction of SC magnets

We have constructed 5 out of 10 SC magnets

Initial cooling of SC magnet

- Precool with liquid nitrogen
- It took a week to cool down by 4K

CX1: Cryocooler#1 2nd stage CX2: Cryocooler#2 2nd stage CX3: Cryocooler#3 2nd stage CX4: SC coil (inner) CX5: SC coil (middle) CX6: SC coil (outer) CX7: Yoke (right face) CX8: Yoke (left face) PT1: Cryocooler#1 1st stage PT2: Cryocooler#2 1st stage PT3: Cryocooler#3 1st stage PT4: HTCPL Dipole (P) PT5: HTCPL Dipole(N) PT6: HTCPL Quadrupole (P) PT7: HTCPL Quadrupole (N)

Field measurements

- Magnetic field measurements were performed
 - to verify the SC magnet design

Some results for BM10

----- I=210 A ---I=190 A

--- I=160 A

--- I=91.3 A

800

1000

0.075

0.1

Fast slewing tests (1)

- Simulating irradiation for
 - lung cancer (4 shots), using

No quench observed!

Multiple-energy operation using 11-flattop pattern

Fast slewing tests (2)

- Simulate 201-flattop pattern (BM10)
- Each flattop: 300ms
- No quench observed
- Average temperature converged around 4.0 K
- Similar results for the other SC magnets

- 3D raster scanning irradiation
 - Fast scanning for moving target
- Multiple-flattop operation
 - 11-flattop operation: currently used in treatment
 - 201-flattop operation: tests succeeded. To be used in treatment operation

- Design of the SC rotating-gantry
 - Compact (~proton gantries)
 - Construction and tests of the 5 SC magnets
 - → Test results agreed with those designed
- Future plan
 - All the construction and installation will be made by the end of FY2014 (March 2015)
 - Commissioning will be made in FY2015

Collaborators

- K. Noda, T. Shirai, T. Murakami, T. Furukawa,
 T. Fujita, K. Shouda, S. Sato, K. Mizushima,
 Y. Hara, and S. Suzuki (NIRS)
- T. Fujimoto, H. Arai (AEC)
- T. Orikasa, S. Takayama,Y. Nagamoto, T. Yazawa (Toshiba)
- T. Ogitsu (KEK)
- T. Obana (NIFS)
- N. Amemiya (Kyoto Univ.)