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Abstract 
We consider the longitudinal point-charge wakefield, 

w(s), for an axisymmetric collimator having inner radius 
b, outer radius d, inner length g and taper length L. The 
taper angle  is defined by  . Using the 
electromagnetic simulation code ECHO, we explore the 
dependence of the wakefield on a collimator’s geometric 
parameters over a wide range of profiles: from small-
angle tapers to step-function transitions.  

INTRODUCTION 
In this paper, using the 2-D electromagnetic simulation 

ECHO code [1,2], we carry out an investigation of the 
longitudinal short-range wakefield due to an 
axisymmetric collimator. More detail on this subject can 
be found in ref. [3]. 

 
a)                                     b) 

Figure 1: a) Step Collimator. b) Tapered Collimator

We consider the highly relativistic limit in which a 
particle traveling at the speed of light c, passes through a 
step-function or tapered collimator illustrated in Figs. 
1a,b.  We denote: the smaller pipe radius by b; the larger 
radius by d; the length of the inner section of the 
collimator by g; and the length of the taper by L. The 
taper angle  is defined by . The 
longitudinal wakefield produced by a point charge is 
denoted w(s), where s is the distance of the test particle 
behind the driving particle.  

Podobedov and Stupakov [4] have noted that the point-
charge wakefield for a collimator can be written in the 
form,  

,(1)           
where  is the impedance of free space. The delta 
function term corresponds to the result in the optical 
regime [5].  The causal function D(s), vanishes for s<0, 
and is discontinuous at s=0. Since the impedance 
vanishes at zero frequency, it follows that 

.                  (2) 
In this paper, in order to facilitate the illustration of the 

behavior of the wakefield over a wide range of parameters 

and for larger s, we prefer to introduce the normalized 
causal function , via 

,   (3) 
where 

          .                          (4) 
Using this normalized function, the ratio of the loss 

factor  to that in the optical regime [5,6]   is 
easily expressed. For a Gaussian bunch of rms width , 
this ratio is given by 

,  (5) 
where . 

For a small-angle tapered collimator (sat), it is shown 
in ref. [4] that, 

        ,                           (6) 
and for a step collimator (st), it follows from the work of 
Okamoto, Jiang and Gluckstern [7] that 

      .                           (7) 
We now note that to within 10% accuracy, 

 ,     .          (8) 
In this paper, we shall restrict our attention to 

collimators with parameters within the range 
.  In this case, Eqs. (6,8) imply that for small-

angle tapers, 
                        ,                            (9) 

and Eqs. (7,8) show that for a step collimator, 
    .                          (10) 

The short-range wakefield depends predominantly on 
the two length scales  and .  In illustrating its 
behavior, one can plot the wakefield versus the variable  

 or . In this paper, in order to illustrate more 
clearly the behavior of the wakefield at longer distances, 
we prefer to utilize the variable . 

For the short-range wakefield , our 
numerical calculations demonstrate that the dependence 
on g is very weak and they support the approximate 
validity of the scaling relation, 
 .  (11) 

With the wakefield approximated by Eq. (11), it 
follows from Eq. (5) that the departure of the loss factor 
from the optical approximation for short bunches 

 can be estimated by 
    .       (12) 

with  varying from 3 for small-angle tapers to 
1.8 for step collimators.  Eq. (12) is a more accurate 

expression for the loss factor than the similar relation 
given in Eq. (12.26) of ref. [8]. 
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DIMENSIONAL ANALYSIS 
We motivate our discussion by using dimensional 

analysis and the longitudinal scaling relation introduced 
in ref. [9]. From dimensional analysis, we can write, 

.                   (13) 
In the special case of a step collimator, for which =0,  

           .             (14) 
We have determined that when g is not too the wakefield 
depends very weakly on g, so we can simplify Eq. (14) to 
read, 

      .                 (15) 
The corresponding weak dependence of the impedance 

of a step collimator on g was found in the analysis of Ref. 
[7]. 

Our ECHO calculations have uncovered the surprising 
result that in the parameter range we are considering [see 
Eq. (8)], and for , the dependence on b/d is very 
weak (see Fig. 2), so to a reasonable approximation, 

,                      (16) 
Clearly, in Eq. (13), we could have chosen to set the 

length scale with any of the lengths in the problem.  Eq. 
(16) provides one motivation for our choice to single out 
the dependence on the larger radius d. 

For a small-angle tapered collimator, it has been shown 
[9] that an important longitudinal scaling relation holds 
for the short-range wakefield, 

    ,       (17) 
where  is a dimensionless parameter. The scaling 
relation (17) holds trivially for the delta function term in 
Eq. (3). It therefore follows from Eqs. (13) and (17) that 

      .     (18) 
We now choose , obtaining 

 (19)  
and hence, 

.(20)  
Recall that the taper angle  is defined by 

.  We can rewrite Eq. (20) in the form 
. (21) 

Based on the ECHO calculations, we have found that 
the dependence on g is weak for . Neglecting 
the dependence on g, and replacing  by the angle  
in the first argument of , we obtain the approximate 
scaling relation 

   .              (22) 
Let us note that Eq. (22), which we have just introduced 
for the tapered collimator, has a form consistent with Eq. 
(15) found for the step collimator . Therefore, 
we can hope that Eq. (15) will have an approximate 
validity for large collimator angles. Our numerical 
calculations show that replacing the tangent by the angle 
extends the range of usefulness of Eq. (15). In the context 
of the derivation of the scaling relation of Ref. [9], 
replacing  by the angle  corresponds to moving out 

of the region of validity of the paraxial approximation, 
which is only applicable for a smooth, slowly-varying 
wall. Once the taper angle approaches , the scaling is 
broken and the function  begins to depend also on the 
angle  itself.  The special case of the wakefield of the 
step collimator  turns out to exhibit very 
interesting behavior deserving individual attention. 

APROXIMATE CALCULATION OF THE 
POINT-CHARGE WAKEFIELD 

Using ECHO, we cannot directly calculate the point-
charge wakefield. In Ref. [4], an approximate method for 
determining the point-charge wake has been introduced. 
Following this approach, we use ECHO to calculate the 
wakefield  produced by a Gaussian bunch of rms 
width . We choose  small enough so that the wake is 
resistive. We then approximate Eq. (3) by 

 
.(23) 

For , the point-charge wake is well-
approximated by Eq. (23), hence 

. (24)  
In this manner, we approximate the scaling function 

introduced in Eq. (11) by 
.         (25)  

STEP COLLIMATORS 
In Fig. 2, we plot  versus  for step 

collimators with b=3mm and d=6mm (black), 12mm 
(green) and 18mm (orange), and with b=6mm and 
d=12mm (red). The rms length of the charge distribution 

 is chosen to be small enough to assure that 
the wake field is resistive. The close agreement of the 
wakefields for these different parameters is striking. 
These results clearly show that the dependence of the 
scaling function  on the ratio  is surprisingly weak, 
as noted in Eq. (16). 

 
Figure 2: For step collimator, we plot 

 versus  for =50  and: 
d=12mm, b=3mm, g=10mm (green); d=12mm, b=6mm, 
g=10mm (red); d=18mm, b=3mm,g=50mm (orange); 
d=6mm, b=3mm, g=50mm (black). 

TAPERED COLLIMATOR 
We note that for ,  is quite independent of 

. In Fig. 3, we plot the function  versus  
for collimators with d=6mm and b=3mm. The cases with 
taper length  (red, blue, orange) satisfy the 
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longitudinal scaling (17) very accurately. The longitudinal 
scaling is seen to be broken when . The 
accuracy of the approximation of Eq. (11) for the cases of 
L=3.12mm (aqua) and L=1.56mm (green) has been 
significantly improved by the replacement of  by the 
angle  as suggested following Eq. (21). Even in the case 
of the step collimator (black), Eq. (11) provides a rough 
approximation for small . In Fig. 4, we plot the function 

 versus  for collimators with d=12mm 
and b=3mm.  The cases with taper length  
(pink, black, orange) satisfy the longitudinal scaling (17) 
very accurately.  The longitudinal scaling is seen to be 
broken for the cases of   (red, aqua, green). 
In Fig. 5, we plot the function  versus  
for collimators with d=6mm, b=3mm, L=25mm (red); 
d=12mm, b=3mm, L=50mm (black); and d=18mm, 
b=3mm, L=50mm (green) for values of  sufficiently 
large to assure longitudinal scaling (17) is accurately 
satisfied. We see that for , there is 
approximate agreement between the curves corresponding 
to different values of b/d, illustrating the weak 
dependence on the ratio b/d in the approximate scaling 
relation (11). 

 
Figure 3: For tapered collimators, we plot   versus 

 for d=6mm, b=3mm and: g=3.12mm, L=1.56mm, 
=32 m (green); g=6.25mm, L=3.12mm, =32 m 

(aqua); g=12.5mm, L=6.25, =32 m (red); g=25mm, 
L=12.5mm, =16 m (blue); g=50mm, L=25mm, 

=8 m (orange).  The black curve corresponds to a step 
collimator. We see that longitudinal scaling is only 
accurately satisfied for . 

SUMMARY 
For a tapered collimator, we have shown that the short-

range wakefield, for  and , is well-
approximated by Eq. (11). Having factored out the 

 term, we have found that in the range 
 of Eq. (8), the scaling function f depends only 

weakly on b/d.  For small taper angle, , the 
ECHO calculations confirm that the longitudinal scaling 
[9] relation (17) is accurately satisfied. The 
approximation of Eq. (11) properly satisfies Eq. (17) for 
small taper angle.  The longitudinal scaling is broken for 
angles large compared with . We have found that 
using the taper angle  in Eq. (11), rather than its tangent, 
allows Eq. (11) to remain a good approximation for larger 
angles , beyond the regime where Eq. (17) is 
satisfied. As the taper angle increases further, Eq. (11) 
becomes less accurate, and the function  begins to 
depend on the angle  itself. 

The case of a step collimator  is quite 
interesting. For the parameters that we have considered, 
its wakefield is well-approximated by,  

, (26) 
where the dependence on b/d is very weak for s/d  
(see Fig. 2). The very weak dependence of  on b/d is 
quite remarkable, and we did not anticipate this simple 
behavior. 

 
Figure 4: For tapered collimators, we plot   versus 

 for d=12mm and b=3mm and: g=3.12mm, 
L=1.56mm, =30 m (green); g=6.25mm, L=3.12mm, 

=30 m (aqua); g=12.5mm, L=6.25, =30 m (red); 
g=18.8mm, L=9.4mm, =30 m (blue); g=25mm, 
L=12.5mm, =20 m (orange); d=12mm, g=50mm, 
L=25mm, =10 m (black); g=100mm, L=50mm, 

=10 m (purple). 

 
Figure 5: For small-angle tapered collimators satisfying 
longitudinal scaling, we plot   versus  for:  
d=6mm, b=3mm, L=25mm (red); d=12mm, b=3mm, 
L=50mm (black); and d=18mm, b=3mm, L=50mm 
(green). 
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