
ANDROID APPLICATION FOR MONITORING THE STATUS OF THE

ADVANCED PHOTON SOURCE

M. Borland , Westmont, IL, USA
∗

Abstract

Smartphones and tablets are nearly ubiquitous and have

the ability to quickly access and display data from network

sources. This suggests their suitability for remote moni-

toring of a facility such as the Advanced Photon Source

(APS). While one possibility is to access data using a web

browser running on the device, native applications offer at-

tractive features, such as improved display and background

execution. We report on development of an Android appli-

cation for monitoring the status of the APS. In addition to

displaying data, the application can issue alerts when beam

is lost or restored. Home screen widgets of various sizes

are also provided. We describe not only the features of

the application, but also give details of the implementation.

The application is free of advertising and is available free

of charge on the Google Play store.

INTRODUCTION

Like many synchrotron radiation facilities, the Advanced

Photon Source (APS) operates thousands of hours per year.

During operating periods, it is expected to provide beam

24 hours a day, seven days a week. Getting information

about status to accelerator staff, beamline staff, and beam-

line users is thus very important. The ubiquity of smart-

phones and tablets provides a way to do this.

These devices are internet-enabled, so it is of course pos-

sible to get information via a web browser. However, using

a native Android application provides several advantages.

One can provide high-level status on the notification bar,

which is visible without unlocking the phone or opening

the application. One can provide a home-screen widget that

provides more information than will fit on the notification

bar. The notification and widget can both be used to launch

the full application. Another advantage of the native appli-

cation over browser-based information delivery is that the

native application can run in the background and provide

audible alerts of significant events.

Inspired by these ideas, we developed an Android ap-

plication that provides both high-level and detailed status

data about the APS. The Android platform was chosen for

its open-source nature and the low cost of entry for devices

and development. Also, the Android home-screen widget

feature provides a superior way to display very high level

data without opening the application. Unlike other smart-

phone platforms, the Android Software Development Kit

(SDK) is free and available for essentially all platforms,

which allowed using Linux for development.

The application is called APSStatus and available free

∗

michael.d.borland@gmail.com

of charge on the Google Play store. The application is also

free of advertising.

FEATURES AND CAPABILITIES

The APSStatus package includes a main application and

three home-screen widgets. The main application is orga-

nized into a series of pages or tabs, each of which displays

information of a certain type. Presently there are tabs for

overall status, status messages, 24-hour and 1-week his-

tory plots, superconducting undulator status, power supply

summary status, power supply detailed status, vacuum sys-

tem status, rf system status, personnel safety system status,

and front-end equipment protection system status. Figure

1 shows the main status screen. This is typical of the status

screens, in that it features a heading with a prominent date

and time stamp, which allows the user to easily ascertain if

the data is fresh. Data is updated at 1 minute intervals.

Since not all of the selections of data will be of interest

to all users, the application menu’s “Tab Settings” selection

allows the user to determine which tabs will be displayed.

Most of the tabs supply snapshots of data without any

history. One exception is the status messages display,

which displays the history of recent status updates issued

by control room staff. Two other exceptions are the 24-hour

and 1-week history tabs, which provide plots of beam cur-

rent, beam lifetime, rms beam motion, number of shutters

open, horizontal emittance, and vertical emittance. Figure

3 shows an example of the 1-week history display. Touch-

ing a plot will bring up a zoomed-in version with pinch-to-

zoom and scrolling features.

In addition to the main application, the user can add one

or more of the three home-screen widgets to their home

screen. These display small selections of data and require

less than 300 bytes per update, i.e., less than 0.4 MB per

day. Hence, these can be left running and provide the most

essential information at a glance.

The largest of these widgets, which has some special fea-

tures, is shown in Figure 4. It shows the beam current

color-coded by status, the number of bunches, the beam

lifetime, the number of operating beamlines, the horizon-

tal and vertical emittance, and the injection efficiency on

the last top-up shot. Unlike the other widgets, this widget

also posts the beam current to the notification bar, where

it can be seen from any home screen and even when the

screen is locked. The beam current notification is color-

coded to indicate whether it is within the expected range

for the present machine mode or not.

Another special feature of this widget is that it can pro-

vide audible alerts when beam is lost or restored. The alerts

are configured from the main application’s menu. The user

Proceedings of PAC2013, Pasadena, CA USA TUPSM26

06 Accelerator Systems

T04 - Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-138-0

691 C
op

yr
ig

ht
c ©

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

can elect to be alerted when beam is lost, when it is absent

for an extended time, and when it is restored. The user can

also set a quiet-time preference to avoid being disturbed

while sleeping, for example.

SOFTWARE DESIGN

Those who are uninterested in software design may wish

to skip this section, as it has little to do with how the appli-

cation is used or what it can do. This section also assumes

some familiarity with Android development.

We used the Eclipse Integrated Development Environ-

ment (IDE), which is advantageous in that it helps one

quickly learn both the Java language and the specific meth-

ods provided by Android. The web contains many re-

sources, such as Android tutorials and user forums (e.g.,

StackExchange).

The main application is organized into a series of Frag-

ment objects, which are grouped together as a single ap-

plication. Each Fragment displays a screen with data of

a particular type, e.g., power supplies or vacuum. The

interface is built using Peter Kuterna’s SwipeyTabs class

and SwipeyTabsSampleActivity, which is an extension of

the FragmentActivity class. SwipeyTabs provides a conve-

nient mechanism for switching between related activities

by clicking on a tab at the top of the screen or swiping the

screen left or right.

SwipeyTabs keeps three Fragments active at any time.

These are the Fragment presently being viewed, plus the

Fragments to the left and right. If the user swipes or tabs to

the Fragment on the right, say, the new Fragment is gener-

ally displayed instantaneously because it is already active.

Meanwhile, the next Fragment is triggered so it is more

likely to be ready when the user swipes again. (If the user

swipes too quickly, this may not be the case.)

The data that is displayed by APSStatus and its various

widgets is provided by the APS web server from files writ-

ten by a node that has read access to EPICS process vari-

ables and write access to the web server’s file space. A

common choice for sharing data on the web is XML (eX-

tensible Markup Language) files and APSStatus was origi-

nally written to use such files. However, XML has a well-

deserved reputation for verbosity, resulting in a very poor

ratio of data delivered to bandwidth used. Since excessive

use of bandwidth is highly undesirable for mobile devices,

we switched to gzipped SDDS (Self-Describing Data Sets)

files. These have the additional advantage that they are

easily created using the SDDS tools [1, 2] that are already

part of the APS control system. There is also a convenient

SDDS library for Java that reads from a URL directly [3].

Fragments are at present divided into three types: (1)

those that read and display data from an SDDS file. (2)

those that retrieve and display bitmap images. (3) those that

retrieve and display text from the server. Most Fragments

are of Type 1.

Each Type 1 Fragment has a corresponding SDDS file

on the server that provides its data. This is done in part be-

cause Fragments do not share data, so there is no point in

reading data from a common source. Also, reading from a

common source would invariably mean using more band-

width than needed. Hence, each Fragment is supplied with

a minimalist data file containing only the relevant informa-

tion. Each file contains a time-stamp, which is prominently

displayed along with the other data. This ensures that the

user will be able to tell if the data is stale for some reason.

The update interval of the data is 1 minute. Updates for

each active Fragment are handled by separate threads.

The displays for Type 1 Fragments require only stock

Android widgets. In order to accommodate various screen

sizes, the root widget is a ScrollView, which permits verti-

cal scrolling. Inside the ScrollView are TextView widgets,

often packed into TableLayout widgets.

The Type 2 Fragments display a series of small bitmaps

that are provided directly by the server, i.e., they do not

retain or plot the history data themselves. When a small

bitmap is pressed by the user, a larger bitmap of the same

data is retrieved and displayed. This reduces use of band-

width and memory by not transmitting and storing large

bitmaps that may be of no interest.

In addition to the main application, there are three home-

screen widgets that provide various selections of very high-

level information. The home-screen widgets are imple-

mented using the AppWidgetProvider class and run inde-

pendently of the main application. As with the main ap-

plication, the home-screen widgets have a 1 minute update

interval. Touching any of these widgets will open the main

application.

Of the three home-screen widgets, one is larger and pro-

vides more information. It also provides an alarm service,

which is configured from the main application, and places

information in the notification bar. The alarm settings are

communicated from the main application to this widget us-

ing the SharedPreferences facility.

On the server side, a cron job runs at 1 minute intervals to

make the various SDDS data files. For each data file, there

is generally a separate request file that is used in an invoca-

tion of sddscasr to create a snapshot. The snapshots are

processed to, in particular, convert status and floating point

data to a uniform format. This simplifies coding on the

application side and also reduces the size of the data trans-

mitted. Small data files just for the home-screen widgets

help minimize use of bandwidth.

Other cron jobs run at intervals to create the bitmaps

needed by the history displays. These jobs used pre-

existing scripts that invoke the program sddsplot.

CONCLUSIONS

We have created an Android application that provides

status information about the Advanced Photon Source, in-

cluding history graphs and detailed status of major subsys-

tems. The application includes home-screen widgets, noti-

fication bar posts, and optional audible alerts of beam loss

or restoration. Bandwidth use is minimized in part through

use of gzipped SDDS files. The application is available free

of cost on the Google Play store, and is free of advertising.

TUPSM26 Proceedings of PAC2013, Pasadena, CA USA

ISBN 978-3-95450-138-0

692C
op

yr
ig

ht
c ©

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

06 Accelerator Systems

T04 - Accelerator/Storage Ring Control Systems

Figure 1: The main status tab of the APSStatus application.

Figure 2: The power-supply detail tab of the APSStatus

application.

REFERENCES

[1] H. Shang et al., PAC 2003, 3470 (2003).

[2] R. Soliday et al., PAC 2003, 3473 (2003).

[3] R. Soliday, ICALEPS 2001, 545 (2001).

Figure 3: The one-week history tab of the APSStatus appli-

cation. Scrolling vertically reveals additional plots, while

pressing on a plot brings up a magnified view that can be

zoomed and scrolled.

Figure 4: 2x1 APSstatus widget showing high-level APS

information. Touching the widget brings up the full appli-

cation. For clarity, we’ve removed most other widgets and

apps from this screen. Note that the beam current also ap-

pears in the notification bar (top left).

Proceedings of PAC2013, Pasadena, CA USA TUPSM26

06 Accelerator Systems

T04 - Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-138-0

693 C
op

yr
ig

ht
c ©

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

