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Abstract
Modern control techniques can be used to design feed-

back systems for stabilizing the intra-bunch dynamics in
the presence of electron cloud (ECI) and transverse mode
coupling (TMCI) instabilities. These techniques require
reduced models of the bunch dynamics. We present a
methodology to identify reduced order linear models repre-
senting single bunch dynamics using CERN SPS machine
measurements. Vertical motion, in response to a wideband
excitation signal, is sampled multiple times across the 5 ns
bunch. The data and an observable canonical structure [1]
are used to identify the dynamics, which is represented as
a discrete time multi-input multi-output (MIMO) system.
We focus on mode 0 (barycentric) and mode 1 (head-tail)
data to identify a reduced order model. Results show that
models clearly capture dominant dynamics and replicate
machine measurements with corresponding central tune,
damping value for each mode and correct separation be-
tween the modes.

INTRODUCTION
Electron cloud and machine impedance can cause intra-

bunch instabilities [2]. Modern control techniques can be
used to mitigate these problems but require reduced order
models of intra-bunch dynamics to design optimal and ro-
bust controllers for wideband feedback systems [3]. We
use system identification techniques to estimate parame-
ters of linear models representing single bunch dynamics.
We briefly explain the reduced order model and identifica-
tion method. Experimental data was collected from a single
bunch with 1×1011 protons at 26 GeV with low chromatic-
ity configuration at CERN SPS. This paper includes results
from mode 0 and mode 1 dynamics analysis but the meth-
ods are in principle applicable to N modes.

MODEL AND IDENTIFICATION
The physical system analyzed in this study is a nanosec-

ond scale SPS bunch. The interaction with the bunch is
done via control variables (momentum kick / driving sig-
nal) and measured variables (vertical displacement). The
control variables and measured variables are discretized to
represent the physical system in a MIMO form. The num-
ber of samples is arbitrary and depends on the sampling
rate of the data acquisition system. These studies use 3.2
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GS/s sampling rate allowing us to sample 16 different loca-
tions across 5 ns RF bucket [3]. The goal is to estimate the
intra-bunch dynamics using these input and output signals.

Reduced Order Model
Any linear dynamical system can be represented in state

space matrix form. A discrete time system sampled at every
revolution period k with p inputs and q outputs is:

Xk+1 = AXk +BUk

Yk = CXk

(1)

where control variable (external excitation) U ∈ Rp, ver-
tical displacement measurement Y ∈ Rq , system matrix
A ∈ Rn×n, input matrix B ∈ Rn×p, and output matrix
C ∈ Rq×n. For a MIMO system, the model order deter-
mines the complexity.

Identification
Identification of a linear dynamical system is done by

casting this problem into a linear least squares form. As-
suming full observability, we can represent our state space
in discrete time observable canonical form. This will en-
able us to estimate a minimum number of parameters [1].
However, even for linear systems there are two well known
limitations for identification. These are the effect of noise
and lack of persistent excitation.

Persistent Input
Input signal design and persistent excitation are critical

aspects of system identification. Given a quasi-stationary
input of uwith a dimension nu and with a spectrum φu(ω),
φu(ω) > 0 should hold for at least n distinct frequencies
for u to be a persistent excitation [4]. Random noise would
be ideal to excite all the modes in the system but requires
high excitation power and bandwidth. The hardware used
in these measurements puts constraints on both power and
bandwidth. The design of an input signal for identification
under given constraints becomes an important question for
the future studies.

Noise Sensitivity
Noise affects the performance of the identification, and

in certain cases can make identification impossible. We
can quantify the effect of the noise by adding noise on a
known system until the identification can no longer clearly
estimate the known dynamics. We drive a synthetic 2 ×
2 coupled MIMO system using a frequency chirp signal
with random noise added to the output signals. The effect
of noise is tested by running the identification algorithm
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Figure 1: Deviation of estimated natural tune and damping
of the 1st mode from the true value for different SNR val-
ues. Red line shows min SNR to get errors less than 10%,
green line is for errors less than 5%.

on input - output data as we increase the noise level. Pa-
rameters of the model and the corresponding modes of the
identified model are estimated for different noise cases. We
observe the effect of noise on the mode estimation by look-
ing at the natural frequency and damping values of the first
mode for different values of signal to noise ratio (SNR).
Figure 1 shows the impact of noise on estimation of system
parameters. For identification algorithm to perform well,
we need to have SNR >∼ 8.

APPLICATION : SPS MEASUREMENTS
In this case the persistent excitation condition is satis-

fied because we are analyzing the dynamics of mode 0 and
mode 1 excited by a chirp excitation, where the frequency
changes over 15000 turns.

Our data processing uses a time varying bandpass fil-
ter to improve SNR to ∼ 20. A window of 500 turns is
used to calculate corresponding center frequency of the fil-
ter, which follows the chirp excitation.

We focus on mode 0 (barycentric) and mode 1 (head-tail)
dynamics. Dynamics, input-output relation of momentum
kick and vertical displacement, can be defined by 2 cou-
pled 2nd order differential equations and represented as 2
× 2 MIMO system with p = 2, q = 2 and n = 4. As men-
tioned before the number of inputs and outputs depends on
the sampling across the bunch. Measurement data should
be arranged in such a way that we have 2 × 2 system. As
an initial approach we separate the bunch into two parts.
The samples lying in the first part (head) are represented
by a macro particle. Its motion is calculated by taking the
average motion of the all samples in the head. The same ap-
proach is used for the second part (tail) of the bunch. Sim-
ilarly we calculate an effective kick for the head and the
tail by using same technique. At each turn we calculate the
effective kick that the head and tail experience by averag-

Figure 2: Amplitude modulated momentum signal used to
kick particles in vertical plane. Each color represents the
kick applied at a single turn. Average kicks, o : head, ∗ :
tail.

ing the waveform between samples 1-8 and 9-16. Figure 2
shows 6 sequential traces (each represents a different turn)
of the momentum waveform across the bunch and corre-
sponding effective kicks for head and tail.

Results

In driven measurements we use both mode 0 and mode 1
excitations [3]. Excitations and corresponding bunch mea-
surements are used to estimate the parameters of the model.
In Fig. 3 the top left plot shows the vertical displacement of
the centroid of the head with measurements in blue and the
response of the model in red. The bottom left plot shows
the same for the tail. Note that our reduced order model is
linear time invariant. It cannot capture external perturba-
tions or parameter variations in the bunch. Still the enve-
lope of the amplitude of the centroid motions is captured
in the time domain. The figures on the right show mea-
surements and response of model in frequency domain. As
an example of external perturbation, we see modulations
in FFT data. One of mechanisms for these effects can be
tune modulation. From both the time and frequency do-
mains we observe that in this specific measurement, mode
0 is dominantly excited in the tail of the bunch. Although
it is a frequency chirp sweeping both mode 0 and mode 1
frequencies, the excitation signal was generated and time
aligned to dominantly excite mode 0. Figure 4 shows an-
other data with strong excitation of mode 1. On the left, we
see the RMS spectrogram of the driven measurement with
clear mode 0 and mode 1 excitation around turns ∼ 4000
and ∼ 9000. On the right side, we show the RMS spec-
trogram of bunch’s vertical motion predicted by reduced
model. The model is able to capture dominant characteris-
tics such as motions at mode 0 and mode 1 tune together
with the effect of chirp and mode 0 residual motion.
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Figure 3: Comparison of the reduced order models response with machine measurements in time and frequency domain.

Figure 4: On the left we see the spectrogram of physical measurement showing both chirp excitation where we excite
mode 0 and mode 1 around turns ∼ 4000 and ∼ 9000, respectively. On the right, we see the same excitation and analysis
applied to the reduced order model.

CONCLUSION
Control of intra-bunch instabilities via a wideband feed-

back control system with optimal control algorithms re-
quires a model of the intra-bunch dynamics. We show ini-
tial promising system identification results. We identify pa-
rameters of a reduced order model that captures mode 0
and mode 1 dynamics from CERN SPS machine measure-
ments. The natural tunes, damping values and the separa-
tion of modes associated with the motion seen in measure-
ments are estimated correctly using a linear model. Fu-
ture work is aimed at estimating more internal modes as
the wideband kicker is available late 2014. The techniques
used are also applicable to explore optimal and robust con-
trol techniques using nonlinear simulation codes [5].
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