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Abstract 
In this paper, instead of applying GA in the 

conventional numerical calculations, we present a 
successful experimental demonstration of implementing 
GA in real machine based optimization. We conduct the 
optimization of the average vertical beam size of the 
SPEAR3 storage ring using GA. Beam loss rate is chosen 
as the sole objective function because it is inversely 
proportional to the vertical beam size and can be 
measured quickly in SPEAR3. The decision variables are 
the strengths of SPEAR3 skew quadrupoles, by varying 
which we can change both the betatron coupling and the 
vertical dispersion to search for the minimum beam size. 
The results in this paper can shed light on new 
applications of GAs in particle accelerator community, for 
example, optimizing the luminosity of the high energy 
collider in real time. 

INTRODUCTION 
GAs have been successfully applied in areas such as 

designing injector systems [1], diagnosing and designing 
accelerating cavities [2], and optimizing beam optics 
design in storage rings [3]. One core process of the GA is 
to evaluate objective functions from a given set of 
decision variables, i.e. knobs to be adjusted for optimum 
search. In spite of various approaches used in previous 
efforts, all of them evaluate the objective functions based 
on numerical simulations using particle tracking codes. In 
principle, when the optimization targets or their 
correlating parameters are measurable experimentally, it 
is possible to use the real machine as the function 
evaluator to directly measure the objective functions, 
rather than using a computer model. Compared to the 
simulation based optimization, the machine based 
optimization has the most accurate representation of the 
machine condition that includes all lattice errors. 
Moreover, when the physics quantities of interest can be 
measured quickly in experiment but cost long time to be 
calculated in simulations, the machine based optimization 
will excel in speed too. One example of such quantity is 
the luminosity of the high energy colliders. In SPEAR3, 
we have identified a similar parameter of interest that can 
be measured nearly instantaneously. In this paper, we 
report an innovative application of GA to minimize the 
average vertical beam size of the SPEAR3 storage ring in 
real time. To construct the GA, we use 13 skew 
quadrupoles in the storage ring as decision variables and 
the measured beam loss rates as the objective function. 
The results can serve as a proof of principle for using GA 
in machine based optimization. 

MINIMIZE THE VERTICAL BEAM SIZE 
In a storage ring, circulating electrons are lost due to 

collisions with gas molecules and electron-electron 
scattering inside the bunch, where the latter is known as 
the Touschek effect [4]. As in most modern electron 
storage rings, the loss of stored beam current in SPEAR3 
is mainly due to the Touschek scattering. Thus, one can 
derive the simple scaling law between beam loss rates 
dI/dt and vertical beam size as shown below: |೏಺೏೟|ூమ ∝ 	 ଵఙഥ೤ , 

where I is the stored current and ߪത௬ is the average vertical 
beam size.  

 
Figure 1: Experiment verification of Eq. (1). 

In SPEAR3, Eq. (1) can be directly validated by 
experimentally measured data. During the experiment, 
100 mA beam is filled in SPEAR3. We achieve 20 
conditions in the ring by varying all skew quads in a fixed 
step size. For each condition, we measure the vertical 
beam size at 1Hz with an x-ray pinhole camera [5]. The 
beam loss rate is recorded instantaneously at 1Hz by a 
beam loss monitor (BLM) [6], installed next to the 
SPEAR3 beam horizontal scraper. The scraper is inserted 
close to the beam in order to capture nearly all of the 
beam loss at one point. The global beam loss is also 
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acquired by recording the current decay during 2-minute 
period using a dc current transformer (DCCT). The 
current droop during the entire period of the experiment is 
less than 4%, thus, the stored current can be considered as 
a constant for the analysis in Eq. (1). Sampling 5 out of 
the 20 different cases, we measured the response matrix 
of the ring for each, and then fit the model to the 
measured data using LOCO. Emittance ratio and average 
vertical beam size then can be calculated from the fitted 
model. All results are shown in Figure 1, where the 
monotonic relationship of the measured beam loss 
monitor data, the vertical beam size, and the emittance 
prove the simple scaling law in Eq. (1). 

ALGORITHM DESCRIPTION 
In this section, we will detail the formation of a GA 

based technique in maximizing the beam loss rate of 
SPEAR3 in real time. The algorithm is based on NSGA –
II [7]. 

Objective Functions and Decision Variables 
The normalized beam loss rate measured by the BLM 

next to the scraper is the single objective function in our 
GA formation. The currents, which represent the strengths 
of the skew quadrupoles in SPEAR3, are the independent 
decision variables. After varying the currents of the 13 
skew quadrupoles, the objective function is evaluated 
from the direct measurement of the BLM.  Distinct from 
most other applications of GA, the accelerator serves as 
the function evaluator, instead of a numerical or analytical 
model. The SPEAR3 skew quadrupoles are powered by 
high precision MCOR power supplies featured with fast 
switching. The data acquisition from the BLM is also 
nearly instantaneous.  

Genetic Operations 
Except the first generation, all sequential generations 

are generated via the process of genetic operations. We 
use two of the most popular genetic operators: real-coded 
Simulated Binary Crossover (SBX) [8] and polynomial 
mutation [8]. In each genetic operation, one of the two 
operators is chosen randomly but conforms to a 
predefined ratio. During a crossover, two parents are 
picked to create two children, while one child is generated 
from one parent in the case of mutation. Once a child is 
created, its corresponding objective function is evaluated. 
Eventually, an offspring population is generated. 
Crossover and mutation are governed by the user-
configurable nonnegative tuning parameters ηc and ηm 
respectively. A more detailed discussion of these two 
parameters can be found in the literature such as reference 
[8]. In short, these tuning parameters control the 
probability density function of the likeness between 
parents and children. For mutation, a smaller ηm 

represents less probability to have a similar child, which 
in turn provides a global search to the optimum regardless 
the parent solution. On the other hand, with a bigger ηm, it 
is very likely that the child only varies slightly from the 
parent and the operation is conducting a local search of 

optimum around the parent. The behavior of ηc is quite 
similar to ηm: the children tend to be close to one of the 
parents with large ηc or be randomly generated with small 
ηc.  

The performance and speed of genetic algorithms 
highly depends on specific problems and can be adjusted 
with mutation and crossover tuning parameters. We have 
programmed the code to dynamically adjust these factors 
according to the diversity of the population in the new 
generation. It appears that the optimization progresses 
faster by promoting more global search with relatively 
small mutation tuning parameters in early generations. 
When the population starts to cluster toward the optimum 
region, it helps to save time by using large mutation 
tuning parameter or shrink the search space.  

Replacement, Re-evaluation, and Stopping 
To ensure an elitist approach, the current population is 

replaced by the best solutions chosen from both the 
offspring and the older generation. To maintain a fixed 
population size, the remaining solutions are discarded. As 
the objective functions are measured directly from the 
SPEAR3 machine, the results may change over time due 
to variation of machine condition. Therefore, we re-
evaluate the surviving solutions from all previous 
generations every 10 generations. Limited by the machine 
time available for the experiment, we run the algorithm as 
long as possible, so normally we stop the program 
manually after a certain amount of time.  

RESULTS 

 
Figure 2: Normalized beam loss rates at the scraper 
during the experiment at 1Hz update rate. 

We choose the population size of 120 in each 
generation for reasonably big sample size and relatively 
short time for generating the whole population during the 
experiment. As a result, it takes less than 3 minutes to 
generate one generation.  

Figure 2 shows the results with 211 generations of GA 
optimization.  To reduce the effect of stored beam current 
decay, we refilled SPEAR3 twice during this experiment 
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as shown by the normalized stored beam current (scaled 
stored current shown as red curve). The optimization was 
paused during the refill and restarted by loading the 
dumped data after the fill. Overall, the algorithm behaved 
well. The normalized beam loss rates grow steadily for 
the first 150 generations, and then start to converge. In 
Figure 3, we compare the skew quadrupoles currents of 
the GA solution and the LOCO solution. The beam loss 
rates for the best solution found using GA are compared 
with the solution found using LOCO in Table 1. Average 
vertical beam size and emittance ratio of the ring with 
these two solutions are also calculated from the fitted 
model using LOCO. 

 
Figure 3: Comparison of the GA solutions and LOCO 
solution. 

The normalized beam loss rate measured with the GA 
solution is increased by 17.9% from that with the LOCO 
solution. According to the scaling law in Eq. (1), this is 
translated to the reduction of vertical beam size by 
15.18%. The calculated values using LOCO fitting show 
a 10.99% reduction of vertical beam size for the GA 
solution.  The discrepancy comes from the accuracy of the 
fitting in LOCO, loss rates measurement, and the 
assumption of solely Touschek effect when deriving the 
scaling law in Eq. (1).  

Table 1: Comparison of Solutions 

 LOCO GA ߪഥ௬ (µm) 7.9617 7.087 
Emittance Ratio 0.0605% 0.0461% 
Normalized Beam Loss rate 2.07 2.44 

SUMMARY 
Genetic algorithms are believed to be especially 

suitable for problems with high complexity where 
traditional gradient-based search methods normally fail to 
optimize. As the storage ring lattice is well designed, the 
coupling optimization of the ring tends to be a well 
behaved problem. This is evident from the final solution: 
out of 13 skew quadrupoles, only 3 are required to be set 

above 5A, while most of others are near zero. This fact 
weakens the advantage of using GA based optimization. 
Nevertheless, with machine based GA, we are able to find 
good solution regardless the time spent. Also, we have 
more confidence in its global validation. In addition, one 
should note that machine based GA may show advantage 
in speed over the traditional gradient based techniques 
when optimizing problems involved with more decision 
variables. As long as the corresponding hardware can be 
set roughly simultaneously, the time cost by machine 
based GA is independent of the number of decision 
variables. However, most traditional algorithms are scaled 
with the number of decision variables in high order. Thus, 
machine based GA can be more valuable for large 
machines. 

The GA techniques we used are far from being refined. 
In future study, we will focus on improving speed and 
robustness.  One possible approach is to create a hybrid 
algorithm that combines both GA and one of the 
traditional techniques for fast local search. When blending 
the two algorithms, it is challenging to maintain their 
original advantage, which requires thorough study. 
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