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Abstract

A method is presented that allows the computation of

space charge effects of arbitrary and large distributions of

particles in an efficient and accurate way based on a variant

of the Fast Multipole Method (FMM). It relies on an au-

tomatic multigrid-based decomposition of charges in near

and far regions and the use of high-order differential al-

gebra methods to obtain decompositions of far fields that

lead to an error that scales with a high power of the or-

der. Given an ensemble of N particles, the method allows

the computation of the self-fields of all particles on each

other with a computational expense that scales as O(N).

Using remainder-enhanced DA methods, it is also possi-

ble to obtain rigorous estimates of the errors of the meth-

ods. Furthermore, the method allows the computation of

all high-order multipoles of the space charge fields that are

necessary for the computation of high-order transfer maps

and all resulting aberrations. This method has been imple-

mented in COSY Infinity, and the progress of applying it to

simulating the 6D cooling channel for the Muon Collider is

reported.

FAST MULTIPOLE METHOD

The fast multipole method for the Coulomb interaction

between many charged particles divides an arbitrary charge

distribution into small boxes with a hierarchical structure.

It then computes the multipole expansions and local expan-

sions of charges far from the observer to achieve a compu-

tation efficiency that scales with the number of particles,

N , and computational errors scaling with a high power of

the differential algebra order. The FMM algorithm is espe-

cially suited for beam dynamic simulations because of the

efficiency and low computational error compared to other

spacecharge algorithms.

Other methods, such as the particle-particle interaction

(PPI) and the particle in cell (PIC) method, while com-

putationally efficient, incur excess error due to modeling

and statistics. The PPI method uses macroparticles and as-

sumes a particular distribution. The PIC method places the

charge distribution onto a mesh, solves the Poisson equa-

tion on mesh points and interpolates between mesh points

to find the field on each particle. Both of these methods suf-

fer from an inability to precisely handle complicated charge

distributions. This difficulty is overcome in the FMM by

decomposing the charge distribution into boxes according

to the charge density such that there are a pre-specified

number of particles in each box to efficiently and accurately

compute the multipole expansions.

FMM Algorithm

The principle of the FMM is to determine the potential of

groups of source particles sufficiently far from the observer

in terms of expansions in 1/r, utilizing the fact that far

away, high powers of 1/r become less significant. These

multipole expansions can be translated and combined, and

again locally expanded to determine the field on a group of

nearby observer particles.

First, all of the charges are enclosed in a cube box called

the zero-level box. A box is defined to be a parent box

if the number of charges inside is larger than s, which we

select. If a box is a parent box, it will be split into eight

equal square boxes which are its child boxes and form a

new level. If any of the child boxes have more than s
charges, they will in turn be split into eight child boxes

which form the next level. This process is iterated until no

box has more than s charges. At each subdivision, we keep

only the nonempty boxes, so the empty boxes are ignored

by the subsequent field calculation.

Analytic Considerations

For a distribution of n particles of charge qi located at

ri(xi, yi, zi), the potential at a point r(x, y, z) can be ex-

pressed as

φ =
n∑

i=1

dr · qi√
1 + r2i d

2
r − 2xidx − 2yidy − 2zidz

(1)

with

dx =
x

x2 + y2 + z2
dy =

y

x2 + y2 + z2
(2)

dz =
z

x2 + y2 + z2
dr =

1√
x2 + y2 + z2

(3)

In COSY Infinity [1,2] we apply the DA techniques [3,4]

to express φ as a DA vector by choosing dx, dy , and dz as

our DA variables. This DA vector is essentially the Taylor

expansion of φ with respect to 1/dx, 1/dy , 1/dz , 1/dr, and

can be translated into another multipole expansion at an

arbitrary point and converted into a local expansion with a

simple composition operation on the DA vector. Using the

domain decomposition to determine near and far regions,

the field in a box is computed using a combination of far

multipole expansions and local expansions.

LINEAR COOLING CHANNEL IN COSY

The demonstration of muon ionization cooling is one

of the key challenges for the Muon Accelerator Program

,

.
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hosted at Fermilab [5]. A linear cooling channel consists

of solenoids, RF cavities, and wedge absorbers designed

for the transverse cooling of a muon beam (Figure 1). Lon-

gitudinal emmitance is not reduced in this channel; slower

particles lose more energy in absorbers than their faster

counterparts, leading to an increase in longitudinal emit-

tance. As the overall beam size is reduced, the density of

particles is increased which leads to space charge effects

becoming significant. Studying these space charge effects

requires developing tools in COSY that are coherent with

the FMM.

Figure 1: R vs. Z geometry of 1 cell.

Ionization Cooling

Muons are produced by sending proton bunches into a

target in order to create pions, which in turn decay into

muons. As a consequence of this production, the muons are

quite ‘hot’ by having a large momentum spread. The beam

must be cooled significantly, within the muon lifetime,

in order ensure a high luminosity muon collider. Beam

emittance is reduced via ionization cooling; the beam is

strongly focused with magnetic fields and subsequently

sent through an absorber material to reduce overall mo-

mentum. The beam regains longitudinal momentum in RF

cavities, resulting in a net loss in perpendicular momentum

and thus beam emittance [6].

Solenoids

The cooling channel is divided into 10 cells with two

solenoids of opposite polarity per cell. These solenoids are

placed on either side of the absorber wedges that divide

the cells in order to increase transverse focusing at the ab-

sorber, which in turn minimizes the heating due to multiple

scattering.

To implement these solenoids in COSY, a 2-dimensional

fieldmap with sufficient range was produced using a Taylor

Model based integrator. For a thick solenoid with uniform

azimuthal current and finite length, the field at an arbitrary

point in space r is given by the Biot-Savart Law

B =
μ0

4π

∫
(JdV )× (r− r

′)

|r− r′|3
(4)

To perform this integral, the domain is subdivided into

small cylindrical boxes centered at r′, and the taylor model

of the integrand is computed. If the remainder bound of

this taylor model is larger than a predefined error bound,

the box at r′ is subdivided into 8 equal boxes and the taylor

model is computed again for the child boxes. This process

is repeated until the remainder bound criterion is met, and

integrated over the entire domain of current. Integrating the

domain in this manner is computationally efficient because

the areas of the domain that are far from the observation

point are not subdivided as finely, so less time is spent on

the domain compared to a uniform domain decomposition.

To generate the field on a particle in the ring:

• The particles are translated, rotated, and tilted into the

first solenoid’s frame of reference

• Using linear interpolation between field map points,

the magnetic field on each particle is determined in

each direction

• The resulting magnetic field in the solenoid’s frame is

then tilted and rotated back into the global frame and

added to the total field

• This process is repeated for each solenoid in the chan-

nel

• For this channel, the solenoids have no rotation or tilt,

so a 2D fieldmap for an entire cell was produced to

take advantage of the cylindrical symmetry

RF Cavities

Each cell in the ring contains four closely spaced RF cav-

ities which fit inside the solenoids. Similar to the solenoids,

a fieldmap is used to determine the electric and magnetic

fields on the particles inside the cavity. The timing of the

ω = 804.98 MHz cavities is determined by the time the ref-

erence particle is tracked through the center of the cavity.

In order to achieve the correct RF phase (ϕ0) at the center

of the cavity, the tuning process proceeds as follows:

• Stop the reference particle at the boundary of the cav-

ity and create an identical tune particle

• make a crude guess of the offset time: t0 =
RFlength/2v

• propagate the tune particle to the center of the cavity

using the crude offset time for the RF fields

• update the offset time: t′
0
= t + 0 + dt, where dt =

(ϕ− ϕ0)/ω
• reload the tune particle at the beginning of the cavity

with the updated offset time

• exit the tuning loop once dt is sufficiently small

Absorber Wedges

The absorber wedges are placed at the boundary of each

celll. The energy loss of a particle over a distance ds in the

absorber is determined by the Bethe-Bloch formula

dE

ds
= −Kρ

Z

A

z2

β2
(log(

2mec
2β2γ2Tmax

I2
)−2β2−δ). , (5)
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for the parameters

• K = 15.35375(MeV · cm3)/(m · g),
• Z is the atomic number of the absorber material (LiH),

• A is the atomic mass of the absorber material,

• ρ is the density of the absorber material,

• I is the ionization potential in MeV ,

• δ is the density correction parameter,

where the maximum kinetic energy transferred to a single

electron in the absorber in a collision is

Tmax =
2mec

2β2γ2

1 + 2γme/mμ + (me/mμ)2
. (6)

SIMULATIONS IN COSY AND

G4BEAMLINE

With all of the lattice elements previously discussed im-

plemented in COSY, we proceeded to compare simula-

tions of a 10-cell cooling channel in both COSY Infinity

and G4beamline [7] with and without space charge effects.

G4beamline is one of the de-facto codes for muon beam

simulations and provides a space charge calculation algo-

rithm and is useful to benchmark for the new COSY func-

tionality. Stochastic effects and particle decays were turned

off in both codes to ensure an accurate comparison; these

processes are not yet implemented in COSY.

We start with the same beam of 1000 particles in both

codes and compare the average orbit excursion, average

momentum (Figure 2) and finally, transverse and longitu-

dinal emittance (with and without spacecharge; Figures 3,

4). As mentioned previously, longitudinal cooling is not

achieved in this linear channel; this region of the Bethe-

Bloch function has a negative slope (ie slower particles lose

more momentum). The behavior of the emittances is no-

ticeably different between the codes although the form of

the emittance graphs is similar.

Conclusions

In conclusion, we have gained a lot of insight into cool-

ing channel simulations. We can simulate various lat-

tice elements and compare meaningful figures between the

codes with and without spacecharge. As this is a work in

progress, some of the issues and differences evident dur-

ing the cross-check with other codes are not resolved yet

and require further investigation. There is still a lot of ef-

fort to be made on a detailed result comparison in order

to obtain consistent results upon comparing the codes, as

well as general improvment to efficiency and functionality

in COSY.

Figure 2: Average Momentum and X as a function of Z for

the beam in G4beamline and COSY.

Figure 3: Transverse and Longitudinal beam emittance

over 10 cells in COSY with and without space charge.
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