Paper | Title | Page |
---|---|---|
MOPBA06 | Algorithms and Self-consistent Simulations of Beam-induced Plasma in Muon Cooling Devices | 186 |
|
||
Funding: Research is partially supported by the DOE MAP program Interaction of muon beams with plasma generated in muon cooling absorbers is an important issue affecting the efficiency of muon cooling. We have developed numerical algorithms and parallel software for self-consistent simulation of the plasma production and its interaction with particle beams and external electromagnetic fields. Simulations support the FNAL experimental program on dense hydrogen gas filled RF cavities proposed for muon beam phase space cooling and acceleration. The core code uses the particle-in-cell (PIC) method for the Maxwell equations coupled to the dynamics of particles. Electromagnetic PIC methods are combined with probabilistic treatment of atomic physics processes responsible for the plasma production. The PIC code supports the dynamics of multiple particle species undergoing rapid acceleration / deceleration (variable relativistic factor) and uses accurate charge and current conservation methods and symplectic discretization schemes. It is fully parallel and runs on multicore supercomputers. Benchmarks and simulations of experiments on gas-filled RF cavities will be discussed. |
||