Author: Kim, S.H.
Paper Title Page
WEPSM06 Beam-Induced Heat Load Predictions and Measurements in the APS Superconducting Undulator 1055
 
  • K.C. Harkay, L.E. Boon, M. Borland, Y.-C. Chae, R.J. Dejus, J.C. Dooling, C.L. Doose, L. Emery, Y. Ivanyushenkov, M.S. Jaski, M. Kasa, S.H. Kim, R. Kustom, V. Sajaev, Y. Shiroyanagi, X. Sun
    ANL, Argonne, USA
  • L.E. Boon
    Purdue University, West Lafayette, Indiana, USA
 
  Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
The first prototype superconducting undulator (SCU0) was successfully installed and commissioned at the Advanced Photon Source (APS) and is delivering photons for user science. The cryosystem was designed to handle a beam-induced heat load of up to 40 W. Prior to operations, detailed predictions of this heat load were made, including that produced by resistive wall heating by the image current, geometric wakefields, synchrotron radiation, electron cloud, and beam losses. The dominant cw source is the resistive wall heat load. The heat load predictions for standard 100 mA user operation were benchmarked using thermal sensors that measure temperatures at various locations in the SCU0 cryostat and along the electron beam chamber. Thermal analysis using the predicted heat loads from the electron beam, using three independent methods, agrees well with the observed measurements.