Author: Huang, Z.
Paper Title Page
MOPAC28 Applications for Optical-Scale Dielectric Laser Accelerators 129
 
  • R.J. England, Z. Huang, C. Lee, R.J. Noble, J.E. Spencer, Z. Wu
    SLAC, Menlo Park, California, USA
  • B. Montazeri, E.A. Peralta, K. Soong
    Stanford University, Stanford, California, USA
  • M. Qi
    Purdue University, West Lafayette, Indiana, USA
  • L. Schächter
    Technion, Haifa, Israel
 
  Funding: Work supported by U.S. Department of Energy under Grants DE-AC02-76SF00515, DE-FG06-97ER41276 and by DARPA Grant N66001-11-1-4199.
Particle acceleration in dielectric laser-driven micro-structures, recently demonstrated at SLAC*, holds the promise of providing low-cost compact accelerators for a wide variety of uses. Laser-driven undulators based upon this concept could attain very short (mm to sub-mm) periods with multi-Tesla field strengths. And since dielectric laser accelerators (DLAs) operate optimally with optical-scale electron bunch formats, radiation production with high repetition rate (10s of MHz) attosecond-scale pulses is a natural combination. We present preliminary analysis of the harmonic field structure for a periodic undulator based on this concept.
 
 
WEOAA1
NGLS - A Next Generation Light Source  
 
  • J.N. Corlett, A.P. Allezy, D. Arbelaez, J.M. Byrd, C.S. Daniels, S. De Santis, W.W. Delp, P. Denes, R.J. Donahue, L.R. Doolittle, P. Emma, D. Filippetto, J.G. Floyd, J.P. Harkins, G. Huang, J.-Y. Jung, D. Li, T.P. Lou, T.H. Luo, G. Marcus, M.T. Monroy, H. Nishimura, H.A. Padmore, C. F. Papadopoulos, G.C. Pappas, S. Paret, G. Penn, M. Placidi, S. Prestemon, D. Prosnitz, H.J. Qian, J. Qiang, A. Ratti, M.W. Reinsch, D. Robin, F. Sannibale, R.W. Schoenlein, C. Serrano, J.W. Staples, C. Steier, C. Sun, M. Venturini, W.L. Waldron, W. Wan, T. Warwick, R.P. Wells, R.B. Wilcox, S. Zimmermann, M.S. Zolotorev
    LBNL, Berkeley, California, USA
  • C. Adolphsen, K.L.F. Bane, Y. Ding, Z. Huang, C.D. Nantista, C.-K. Ng, H.-D. Nuhn, C.H. Rivetta, G.V. Stupakov
    SLAC, Menlo Park, California, USA
  • D. Arenius, G. Neil, T. Powers, J.P. Preble
    JLAB, Newport News, Virginia, USA
  • C.M. Ginsburg, R.D. Kephart, A.L. Klebaner, T.J. Peterson, A.I. Sukhanov
    Fermilab, Batavia, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
We present an overview of design studies and R&D toward NGLS – a Next Generation Light Source initiative at LBNL. The design concept is based on a multi-beamline soft x-ray FEL array powered by a CW superconducting linear accelerator, and operating with a high bunch repetition rate of approximately 1 MHz. The linac design uses TESLA and ILC technology, supplied by an injector based on a CW normal-conducting VHF photocathode electron gun. Electron bunches from the linac are distributed by RF deflecting cavities to the array of independently configurable FEL beamlines with nominal bunch rates of ~100 kHz in each FEL, with uniform pulse spacing, and some FELs capable of operating at the full linac bunch rate. Individual FELs may be configured for different modes of operation, including self-seeded and external-laser-seeded, and each may produce high peak and average brightness x-rays with a flexible pulse format.
 
slides icon Slides WEOAA1 [6.908 MB]