Author: Facco, A.
Paper Title Page
WEPAC03 Electro-Magnetic Optimization and Analysis of a Quarter Wave Resonator 790
 
  • Z. Zheng, Z.Q. He
    TUB, Beijing, People's Republic of China
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • A. Facco, Z.Q. He, Z. Liu, J. Wei, Y. Xu, Y. Zhang, Z. Zheng
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
A β=0.085 quarter wave resonator (QWR) with resonant frequency=80.5 MHz is used in the Facility of Rare Isotope Beam (FRIB). Its baseline structure is designed to achieve the FRIB specifications with optimum cost to performance ratio. Electro-magnetic optimization is introduced in this paper to modify its internal geometry to reach instead maximum accelerating gradient, while preserving the original flange to flange length. Reduced peak magnetic field and increased shunt impedance are well achieved in the optimization while keeping the same stored energy. The maximum accelerating voltage is raised accordingly. Multipacting and steering are also analyzed for the optimized cavity. This resonator could be used in the ReA linac at MSU and in all applications where the maximum accelerating voltage should be achieved in a limited space, or where the accelerator cost is mainly driven by the resonator gradient.
 
 
FRYBA1 Progress towards the Facility for Rare Isotope Beams 1453
 
  • J. Wei, N.K. Bultman, F. Casagrande, C. Compton, K.D. Davidson, J. DeKamp, B. Drewyor, K. Elliott, A. Facco, P.E. Gibson, T . Glasmacher, K. Holland, M.J. Johnson, S. Jones, D. Leitner, M. Leitner, G. Machicoane, F. Marti, D. Morris, J.A. Nolen, J.P. Ozelis, S. Peng, J. Popielarski, L. Popielarski, E. Pozdeyev, T. Russo, K. Saito, J.J. Savino, R.C. Webber, M. Williams, T. Xu, Y. Yamazaki, A. Zeller, Y. Zhang, Q. Zhao
    FRIB, East Lansing, USA
  • D. Arenius, V. Ganni
    JLAB, Newport News, Virginia, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • R.E. Laxdal
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • J.A. Nolen
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) is based on a continuous-wave superconducting heavy ion linac to accelerate all the stable isotopes to above 200 MeV/u with a beam power of up to 400 kW. At an average beam power approximately two-to-three orders-of-magnitude higher than those of operating heavy-ion facilities, FRIB stands at the power frontier of the accelerator family - the first time for heavy-ion accelerators. To realize this innovative performance, superconducting RF cavities are used starting at the very low energy of 500 keV/u, and beams with multiple charge states are accelerated simultaneously. Many technological challenges specific for this linac have been tackled by the FRIB team and collaborators. Furthermore, the distinct differences from the other types of linacs at the power front must be clearly understood to make the FRIB successful. This report summarizes the technical progress made in the past years to meet these challenges.
 
 
FRYBA1 Progress towards the Facility for Rare Isotope Beams 1453
 
  • J. Wei, N.K. Bultman, F. Casagrande, C. Compton, K.D. Davidson, J. DeKamp, B. Drewyor, K. Elliott, A. Facco, P.E. Gibson, T . Glasmacher, K. Holland, M.J. Johnson, S. Jones, D. Leitner, M. Leitner, G. Machicoane, F. Marti, D. Morris, J.A. Nolen, J.P. Ozelis, S. Peng, J. Popielarski, L. Popielarski, E. Pozdeyev, T. Russo, K. Saito, J.J. Savino, R.C. Webber, M. Williams, T. Xu, Y. Yamazaki, A. Zeller, Y. Zhang, Q. Zhao
    FRIB, East Lansing, USA
  • D. Arenius, V. Ganni
    JLAB, Newport News, Virginia, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • R.E. Laxdal
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • J.A. Nolen
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) is based on a continuous-wave superconducting heavy ion linac to accelerate all the stable isotopes to above 200 MeV/u with a beam power of up to 400 kW. At an average beam power approximately two-to-three orders-of-magnitude higher than those of operating heavy-ion facilities, FRIB stands at the power frontier of the accelerator family - the first time for heavy-ion accelerators. To realize this innovative performance, superconducting RF cavities are used starting at the very low energy of 500 keV/u, and beams with multiple charge states are accelerated simultaneously. Many technological challenges specific for this linac have been tackled by the FRIB team and collaborators. Furthermore, the distinct differences from the other types of linacs at the power front must be clearly understood to make the FRIB successful. This report summarizes the technical progress made in the past years to meet these challenges.