Design Studies and Optimization of Future X-ray FELs Based on Advanced High Frequency Linac

Faya Wang SLAC National Accelerator Lab 2011 Particle Accelerator Conference

Outline

- 1. Advantages of High Frequency Linacs
- 2.RF to Beam Energy Conversion Efficiency
- 3. Short Beam (e.g., Single or Two Bunch XFEL)
- 4. Long Beam
- 5. Scaling Laws for XFEL Linacs
- 6. Costs, Risk and Tolerances
- 7.X-band Driven Linacs Light Sources
- 8. Summary

NC Linac Driven Light Sources

(Operating, Under Construction, Proposed)

	GHz	MV/m	GeV	nC	Hz
LCLS (U.S.)	S (2.9)	17	4 ~ 14	0.02~ 0.25	120
SCSS (Japan)	C (5.7)	35 ~ 39	6~8	0.3	60
LLNL/SLAC MEGA-ray	X(11.4)	80	0.25	0.25	60
SwissFEL •	С	26	2.1 ~ 5.8	0.2	100
PAL (Korea)	S/C	25~27/ <mark>40</mark>	10	0.2	60
SPARX-FEL (Italy)	S/C	23.5/35	2.6	1	
MAX IV (Sweden)	S/C	> 25/>35	3.5	0.1	100
Shanghai XFEL (China	С	40	6.4	0.2	
ZFEL (Netherlands)	X	100	2.1	0.01 ~ 0.1	10 ~ 1000

Compact – Affordable site size

page 3

High Efficiency – Available AC Power

High Frequency Advantages

- ✓ High gradient -- a compact Linac
- ✓ High efficiency-- less AC Power Needed

How about Cost, Risk and Tolerance?

Normal Conducting Constant Gradient Very Low Beam Loading Travelling Wave Structure Quality factor, QBeam current, I_h Shunt impedance, r_s RF frequency, ω Acceleration gradient, G Beam train length, T_{h} Field attenuation constant, τ $\tau_{opt} \approx -$

2. RF to Beam Energy Conversion Efficiency

$$\eta = \frac{r_s I_b T_b}{G} \left(1 - e^{-2\tau} \right) / \left(T_b + 2\tau Q / \omega \right)$$

To maximize, η

$$e^{2\tau_{opt}} - 2\tau_{opt} = T_b\omega/Q + 1$$

Single/Two Bunch (SB)

Long Bunch Train (LB)

For constant average iris radius / rf wavelength (a/ λ), efficiency (η) increases and power per unit length (P/L) decreases at higher frequency

Existing Accelerators for Linear Colliders

(Optimized for Higher Beam Loading)

	S	С	X	Unit
Structure	SLAC S-band	SCSS C-band	NLC H60VG3	
RF Frequency	2.9	5.7	11.4	GHz
Length	3	1.8	0.6	m
Filling time, T_f	830	286	105	ns
Shunt	52 60	52.1	48.8 ~	MO/m
Impedance	$53 \sim 00$	55.1	77.8	10182/111
Gradient	20	35	65	MV/m
	0.46	0.34	0.25	J/MeV
$U_{rf}/U_b, U_{rf} =$				$(T_{b} = 50ns)$
$P_{rf}^{*}(T_f + T_b)$	1 08	1 55	2 20	J/MeV
3 3	1.00	1.33	4.4 0	(T _b =1250ns)

3. Short Beam

CG-TW Structure Efficiency for $T_b = 50$ ns and Low Beam Loading

Choosing a/ λ -vs- Frequency

Want high shunt impendence (rs) but reasonable wakefields

Also want long TW structure length to minimize cost (SW cavities also considered but would lose a factor of two in efficiency)

Choose average $a/\lambda = 0.13-0.15$ (dashed line) so structures similar in length to those for linear colliders – wakes manageable at X-band

Optimum Structures for T_b = 50 ns

Frequency	S (2.9)	C (5.7)	X (11.4)	GHz
Length	2.4	1.2	0.6	m
Fill time, T_f	265	150	77	ns
Iris radius, <a λ="">	0.13	0.14	0.15	
Average Shunt impedance	58	74	87	MΩ/m
Gradient	20	40	80	MV/m
Peak rf power	57	60	77	MW
RF to beam energy ratio, U _{rf} /U _b	0.37	0.25	0.20	J/MeV

Available RF Power Sources

	S	С	Χ	Unit
Klystron	5045	E3746	XL4	
Maximum Pulse Width, T _{k, max}	3.5	2.5	1.5	μs
Structure Fill Time, T _f	265	150	77	ns

Given $T_f << T_{k, max}$, use SLED (SLAC Linac Energy Doubler) to boost rf peak power – not particularly

efficient, but cost effective

Acceleration Boost with SLED Cavities

Summary Per RF Station for T_b = 50 ns

	S (2.9)	C (5.7)	X (11.4)	GHz
Peak rf power, P _k	1×65	1×50	2×50	MW
RF pulse length, T_k	1.5	1	0.6	μs
Efficiency of SLED	71	65	64	%
Gradient, G	20.3	40	77.4	MV/m
Number of Structures	4	3	5	
Beam energy, U _b	196	145	234	MeV
Rf to beam energy ratio, $(U_{rf} = P_k * T_k), U_{rf}/U_b$	0.5	0.34	0.26	J/MeV
~ $\frac{1}{2} U_{rf} / U_b$ with ×4 Gradient !				

4. Long Beam

Curves assume the same a/λ where $r \sim \omega^{1/2}$, $Q \sim \omega^{-1/2}$

Accelerator Design for $T_h = 1250$ ns

reasonable length and the wakefields are manageable

Optimum Structures for T_b = 1250 ns

	S	С	X		
Length	4	2	1	m	
Fill time, T_f	999	511	159	ns	
Iris size, $$	0.11	0.12	0.15		
Shunt impedance	65	83	91	MΩ/m	
Gradient	20	40	50	MV/m	
Peak rf power	34	47	34	MW	
U_{rf}/U_b	0.85	0.93	0.95	J/MeV	
page 15					

NATIONAL ACCELERATOR LABORATORY

Summary Per RF Station for T_b = 1250 ns

(With long beam, cannot use SLED effectively)

	S (2.9)	C (5.7)	X (11.4)	
Klystron Peak Power	65	50	50	MW
Rf Pulse Width	2.25	1.75	1.5	μs
Number of Accelerators	2	1	3	
Gradient	19.5	41.4	49.7	MV/m
Beam Energy, U _b	157	83.5	148.9	MeV
U _{rf} /U _b	0.93	0.95	0.99	J/MeV

Similar U_{rf}/U_b with x2.5 Gradient

Scaling Law: Shunt Impedance

For realistic structures and tolerances : $\mathbf{r} \sim \omega^{1/4}$

Scaling Relations

(follows from shunt impedance scaling)

	Short beam pulse $T_b << T_f$	Long beam pulse $T_b >> T_f$
Shunt impedance	∼ω ^{1/4}	$\sim \omega^{1/4}$
Q factor	~ ω ^{-1/2}	$\sim \omega^{-1/2}$
Filling time	$\sim \omega^{-3/4}$	$\sim \omega^{-7/6}$
RF power per unit length	$\sim G^2 \omega^{-1/2}$	$\sim G^2 \omega^{-1/4}$
Efficiency, η	$\sim G^{-1}\omega^{7/4}$	$\sim G^{-1}\omega^{5/12}$
Repetition rate*	$\sim G^{-2}\omega^{-5/4}$	$\sim G^{-2}\omega^{-5/12}$

* at a constant cooling rate per unit surface area

page 19

Structure Efficiency: Design versus Values Predicted by Scaling Relations

5. Costs, Risk and Tolerances

Rough Cost Comparison by Component

	S	С	X	
Klystron	0.73	0.86	1	
Modulator ¹⁾	1.5	1.1	1	
1m Structure ²⁾	0.7	0.8	1	
RF Distribution per MeV	1.5	0.94	1	
LLRF per Klystron	1	1	1	
AC Power + Cooling	Same per Watt			
Tunnel	Same per Unit Length			

1) $0.5 + 0.5*(T_k/1.5)*(P_{rf}/50)$

2) 0.5/freq + 0.5*sqrt(freq)

page 21

Efficiency of modulator = 85% efficiency of klystron = 48 %

Rough Estimated Cost per MeV

$T_b = 50 \text{ ns}, \text{ at } 60 \text{ Hz}$

Rough Estimated Cost per MeV

$T_{b} = 1250 \text{ ns}, 60 \text{ Hz}$

Technical Risk Comparison Versus Frequency

		Michael Fazio	
	S C		X
Basis	SLAC Linac Operation	XFEL/Spring-8 Test Linac	NLC Test Accelerator
Klystron	 SLAC 5045 65 MW, 3.5 μs, 120 Hz 46% efficiency 30 million hours of operation (since 1984) > 1100 tubes MTBF 75K-100K hrs 	 Toshiba E3746 50 MW, 2.5 μs, 60 Hz 47% efficiency Successfully operated in Test Accelerator 72 installed on Main 8 GeV linac Commissioning begins March 2011 No MTBF Data 	 SLAC XL4 and XL5 50 MW/9 kW avg, 1.5 μs, 60 Hz 23 XL4/5 klystrons produced Several have > 10,000 hrs but mostly below 35 MW Life test starting on a new tube
Modulator	Line type modulator	"Compact" line type modulator	Solid state or Line type modulator
Linac	 20 MV/m SLAC Trf = 800ns 	 40 MV/m SCSS Trf = 250 ns 	 80 MV/m NLC Trf = 400 ns
 Low Ris Med. Ris High Ris 	k SLAC sk 5045 sk	Compact modulators and klystron For XFEL/SPring-8 (72 total)	survey su

Misalignment in x—plane

Misalignment (μ m): 0 (black), 100 (red), 200 (blue), and 500 (green);

Tolerance for Single Bunch Operation

Strength parameter:
$$\Upsilon = rac{eN\ell\langle W
angleeta_0}{2E_0}g(E_f/E_0,\zeta)$$

Chao, Richter, Yao

$$g(x,\zeta) = \frac{1}{\zeta} \frac{x^{\zeta-1}}{x-1} \qquad \text{(for } \beta \sim E^{\zeta}\text{)}$$

Emittance growth due to injection jitter Xo if Y small: $\delta \epsilon = \frac{x_0^2 \Upsilon^2}{2\sigma_{x0}^2}$

•For, eN= 250 pC, ε_N = .4 µm, ζ = 0, and

Linac-2: $E_0 = .25 \text{ GeV}$, $E_f = 2.5 \text{ GeV}$, $\sigma_z = 56 \text{ }\mu\text{m}$, l = 32 m, $\beta_0 = 10 \text{ }m (\sigma_{x0} = 90 \text{ }\mu\text{m}) \implies Y = .14$ Linac-3: $E_0 = 2.5 \text{ GeV}$, $E_f = 6 \text{ GeV}$, $\sigma_z = 7 \text{ }\mu\text{m}$, l = 50 m, $\beta_0 = 10 \text{ }m (\sigma_{x0} = 29 \text{ }\mu\text{m}) \implies Y = .01$

• $\langle a/\lambda \rangle = 0.18$

An injection jitter of $\sigma_{x0} \rightarrow 1\%$ emittance growth in Linac-2 and .003% in Linac-3 Misalignment of 1 mm rms \rightarrow an emittance growth of 1% in Linac-2, 0.1% in Linac-3

- $\langle a/\lambda \rangle = 0.13$ tolerances are 3 times smaller
- The wake effect is weak mainly because of high gradient, short bunch and low charge.

LANL MaRIE Project: 50 keV XFEL (in pre-conceptual design phase)

A Look at MaRIE

MPDH

MaRIE will be the first materials research center to have high-energy, high-repetition-rate, coherent x-ray capability along with charged-particle imaging. It will create any number of extreme environments and allow in situ measurements of a sample.

Undulator

F³

M4

20 GeV, 50+ MV/m Linac (space limited)

Proton beam

Coherent x-rays Electron beam

(Bolenial beamline)

(MPDH) (proposed), samples will be exposed primarily to high-stress environments. The XFEL and proton besms will be directed to any of several user stations and trained simultaneously on a single sample to correlate what's happening to the sample's atoms and to its microstructure. Standard laser or electron diffraction and scattering techniques will measure surface and bulk-scale properties.

In the Multi-Probe Disgnostic Hall

Making in situ measurements with different size (or time) resolutions simultaneously will make the MPDH unique among materials facilities and will be extremely valuable. For example, nanometer-size dislocations within a material can coalesce into cracks 100 nanometers long, which over time (seconds to years) grow into visible fault lines.

THP045, THP163

MaRIE will have two accelerators.

The LANSCE proton accelerator (axisting) will provide a high-current beam of 800-megaelectronvolt protons for irradiating samples and generating neutrons. The protons can also be used for proton microscopy, which can map density variations within a sample. Proton microscopy is uniquely suited to imaging micron-scale voids within dense metal and to following void formation and evolution.

The electron linear accelerator (proposed—only the beam line is shown here) will create a pulsed beam of relativistic electrons that, when sent through a long line of magnets known as an undulator, will emit coherent x-rays that can image the microstructure in the sample's interior. The accelerator/undulator combination is commonly called a free-electron laser. MaRIE's would be a highenergy x-ray free-electron laser (XFEU).

MaRIE will have three experimental halls.

The Fission and Fusion Materials Facility (F²) (proposed) will be unique in that it will be able to create a variety of high-flux, high-energy neutron environments that will mimic the extreme neutron environment in next-generation fission and/or fusion reactors. Protons from the LANSCE accelerator will be directed to a tungsten target in the Materials Test Station (MTS) (currently under construction) to generate the neutrons. Scientites at F³ will use photons to study samples in place.

Materials Facility (M4) (proposed) will enable controlled synthesis of complex materials (including chemical synthesis, thin film and crystal growth, and microstructural processing) and nondestructive, multiscale characterization of a sample's thermal, mechanical, and electrical properties. Characterization during synthesis will permit control of the nucleation and growth of material defects and interfaces. Materials can also be characterized during exposure to extreme environments (scaled down from those at F³ and MPDH), and researchers will be able to watch defects and interfaces evolve in extremes. M4 will also have a theory, modeling, and computation (TMC) centerpiece and will serve as a gateway to other Laboratory capabilities.

The Making, Measuring, and Modeling

Schemätic representation of an experiment being conducted at F3. The high-energy proton beam (pink) will enter the building and strike a trugster target (green), producing copious neutrons with energies similar to what's produced in an advanced nuclear reactor. The neutrons will strike the target (red cucbe), and their effect on the sample's microstructure will be found by analyzing the diffracted x-rays (blue circle). Summary: Advantages of High Frequency Linacs for XFEL Drivers

- Single bunch (S: 20 MV/m, C: 40 MV/m, X: 80 MV/m)
 - ✓ Compact
 - ✓ High efficiency
 - ✓ Less expensive
- ≻ Long beam pulse (S: 20 MV/m, C: 40 MV/m, X: 50 MV/m)
 - ✓ Compact
 - ✓ Similar efficiency & cost
 - ✓ Have solution for long-range wakefield suppression at X-band

I would like to thank :

C. Adolphsen, T. Raubenheimer, J. Wu, F. Zhou

PAC'11 committee

