

Brazilian Synchrotron Light Laboratory

# Performance Optimization for the LNLS Fast Orbit Feedback

Daniel de Oliveira Tavares Control Engineer at Beam Diagnostics Group

#### Outline



- 1. The Brazilian Synchrotron Light Laboratory (LNLS)
- 2. FOFB Hardware Architecture for the LNLS Storage Ring
- 3. FOFB Systems Overview
- 4. Correction Algorithms and Orbit Control in Mode Space
- 5. Actuator Limitations
- 6. Simulations for performance optimization of the LNLS FOFB
- 7. Conclusion and Perspectives

### Brazilian Synchrotron Light Laboratory





# Sirius Project

(in design phase)

| Operation energy             | 3 GeV      |
|------------------------------|------------|
| Injection energy             | 3 GeV      |
| Maximum beam current         | 500 mA     |
| Ring circumference           | 460 m      |
| Horizontal emittance (no ID) | 1.7 nm.rad |

#### LNLS UVX Storage Ring (in operation since 1997)

| Operation energy     | 1.37 GeV   |
|----------------------|------------|
| Injection energy     | 500 MeV    |
| Maximum beam current | 250 mA     |
| Ring circumference   | 93 m       |
| Horizontal emittance | 100 nm.rad |

### LNLS FOFB – Architecture





More details in MO263 – Fast Orbit Feedback System for the LNLS Storage Ring

#### LNLS FOFB – Status

- Project started on August 2010
  - Labview training (real-time and FPGA platforms)
  - 1 Engineer + 1 Engineering intern
  - Proof of Concept and Bench Tests
- Installation on the Storage Ring on November/December 2010 Shutdown
- First tests with beam in <u>open-loop</u> on January 2011
  - Fast acquisition at 3 kS/s (500 Hz bw)
  - Hardware OK
  - Software debugging
  - Setbacks (control system, power supplies)
- First tests with beam in <u>closed-loop</u> on February 2011
  - Setbacks (power supplies response)
  - 10 Hz maximum correction rate





#### LNLS FOFB – Status

- Project started on August 2010
  - Labview training (real-time and FPGA platforms)
  - 1 Engineer + 1 Engineering intern
  - Proof of Concept and Bench Tests
- Installation on the Storage Ring on ٠ November/December 2010 Shutdown
- First tests with beam in <u>open-loop</u> on January 2011
  - Fast acquisition at 3 kS/s (500 Hz bw)
  - Hardware OK
  - Software debugging
  - Setbacks (control system, power supplies)
- First tests with beam in <u>closed-loop</u> on ٠ February 2011
  - Setbacks (power supplies response)
  - 10 Hz maximum correction rate



Beam and PS Step Response (ACH09B)

0.8

0.6

0.4

0.2

Π

Ō

Current Step (A)

Beam Response (µm) -1000

-2000

-3000

20

15

-10

'n.

Deviation from reference (um)



#### FOFB Systems - Overview

- FOFB Goal
  - Mitigation of "fast" disturbances, caused mainly by:
    - Magnets vibration (mainly quadrupoles)
    - Power supplies ripple
    - Booster cycles
    - ID gap-phase reconfiguration
    - "Cultural noise" (facility specific)
- History
  - APS pioneer work, 1993: the "real-time orbit feedback" (1 kHz correction rate, 30 Hz effective correction bandwidth)
  - Hardware platform: from <u>control-system-workstation-based</u> to <u>dedicated</u> <u>embedded systems</u> (DSP processor, FPGA) linked by high throughput synchronized network
  - Recently commissioned systems: 4-10 kHz correction rate (global correction), up to 100-250 Hz effective correction bandwidth

#### FOFB Systems - Overview



- Local vs. Global
  - First systems: multiple local feedbacks in closed-bumps
  - Not desirable in recent 3rd-generation machines  $\rightarrow$  tenths of IDs moving simultaneously
- FOFB vs. SOFB
  - First systems: low- and high-pass filtering to avoid "loop fighting" → generates deadband
  - ALS and SOLEIL had good results downloading SOFB setpoints to FOFB
- Photon BPMs in the loop
  - APS Local Loops
  - SLS local corrections integrated to global feedback
  - SOLEIL's experience, etc.
- Orbit Control in Mode Space
  - Singular Values Filtering
  - Tikhonov regularization
  - One dynamic controller for each mode? (not yet tried!)
- Actuator Limitations
  - Power supplies (smaller the setpoint step, greater the bandwidth)
  - Vacuum chamber roll-off (most critical for copper and aluminum chambers, not an issue for LNLS stainless steel chamber)
  - Time delay (BPM data filtering group delay, data distribution, correction algorithm processing)

# Singular Value Decomposition (SVD)

- The SVD method for matrix "inversion" has replaced MICADO and Harmonic ٠ algorithms without performance losses  $10^{2}$
- Mathematical formulation: •

$$R = USV^T \longrightarrow C = VS_{inv}U^T$$

**Response Matrix** 

Correction Matrix



- Interpretation
  - Low-order modes demands little effort of corrector magnets to correct large distortions
  - High-order modes demands large excursions of corrector magnets for correction small disturbances
  - We must consider the "direction" (making an analogy to the BPM readings as a vector in space) of the disturbance vector
- Filtering the singular values allow to avoid correcting high order modes aggressively ٠
  - Possible approaches:
    - Discard small singular values  $\rightarrow$  information loss  $\rightarrow$  no exact (or maximum) correction anymore
    - Apply Tikhonov regularization (only one degree of freedom; is it the best we can get?)
    - Why not free weighting the singular values, is there any drawback?



# SVD Graphical Interpretation





# Eigenvector with Constraints (EVC)

 Nakamura et al. proposes a novel method based on Lagrange multipliers to set constraints of zero error for some BPM readings when "inverting" the response matrix.

**Correction Matrix** 

• Mathematical formulation:

$$= R^{T} R \qquad C = DZ - (DB^{T} - I_{n})A^{-1}R^{T}$$

"Squared" Response Matrix

A

 $A = V\lambda V^{T}$ Eigen decomposition

- Equivalent to SVD (minimization of least squares) when calculating the correction matrix without constraints.
- The eigenvalues of A are the squared singular values of R.
- Successful experiences with beam in KEK, ALS and LNLS



Auxiliary matrices:

 $B = (ZR)^T$ 

 $Z = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$ 

 $D = A^{-1} B \left( B^T A^{-1} B \right)^{-1}$ 

# Dynamic Orbit Control



• Traditional Approach



• Dynamic Control in Mode Space



Actuator limitation and some ideas...



The power supplies are always



Classical approach  $\rightarrow$  anti-windup



- It works well for single-input-singleoutput systems (SISO), but not for multivariable systems (MIMO)
- More sophisticated schemes must be investigated.





#### Singular Values Filtering



#### Disturbance Rejection Bandwidth for each singular value group



Performance Optimization for the LNLS Fast Orbit Feedback

#### Plant Model

$$p(s) = \frac{K_{PS} e^{-\theta s}}{\tau_{PS} s + 1} \qquad \begin{array}{c} \tau_{PS} = 0.5 \text{ ms} \\ \theta = 1 \text{ ms} \\ \frac{di}{dt_{\text{max}}} = \pm 0.2 \text{ A/ms} \end{array}$$

 $K_{PS} = 1$ 

*Vacuum chamber and corrector magnet core ignored*  $\rightarrow$  *high cutoff* on 1.25 kHz (stainless steel vacuum chamber)

It is assumed that the power supply is regulated by an internal control loop which adjusts the gain according to the setpoint step

#### PI control with anti-windup ٠

Tuning rule (Skogestad):

 $K_{P} = \frac{1}{K_{PS}} \frac{\tau_{PS}}{\tau_{CL} + \theta}$  $T_i = \min(\tau_{PS}, 4 \cdot (\tau_{CL} + \theta))$ 

 $\tau_{cl}$  is the desired closed-loop time constant

- Correction algorithm
  - EVC with 2 constraints (undulator sector)
  - Singular Value Filtering
    - Identification of 3 singular value levels
    - Multiplication by constant factors for each level



- Time Response for Step Disturbance
  - SVD linear control
  - SVD with anti-windup
  - SVD with singular value filtering
  - SVD with singular value filtering and anti-windup
  - EVC with 2 constraints, singular value filtering and anti-windup
- Disturbance direction combines higher and lower order modes ("easiest" and "best" direction) with 100 µm of most distorted BPM



**Before Filtering Singular Values** 



- Time Response for Step Disturbance
  - SVD linear control
  - SVD with anti-windup
  - SVD with singular value filtering
  - SVD with singular value filtering and anti-windup
  - EVC with 2 constraints, singular value filtering and anti-windup
- Disturbance direction combines higher and lower order modes ("easiest" and "best" direction) with 100 µm of most distorted BPM



#### After Filtering Singular Values



- Time Response for Step Disturbance
  - SVD linear control
  - SVD with anti-windup
  - SVD with singular value filtering
  - SVD with singular value filtering and anti-windup
  - EVC with 2 constraints, singular value filtering and anti-windup
- Disturbance direction combines higher and lower order modes ("easiest" and "best" direction) with 100 µm of most distorted BPM
- EVC does not significantly disturb the remaining COD, while guarantying fast disturbance mitigating in the constrained BPMs

**After Filtering Singular Values** Plotting only the selected BPMs for zero error 0.06 SV-Filt SV-Filt/AW RMS (mm) 0.04 SV-Filt/AW/EVC 0.02 0 10 20 30 40 50 60 70 80 90 0 100 Current Steps (A) 0.01 0.008 0.006 0.004 Maximum 0.002 0 10 20 30 40 50 60 70 80 90 100 0 Time (ms)

# **Conclusions and Perspectives**

# LNLS

#### PERFOMANCE OPTIMIZATION

- The **"Eigenvector with constraints (EVC)"** method can provide excellent results, comparable to the SVD, with the additional benefit of providing zero error for the selected BPMs.
- The singular values filtering is essential to increase performance and can also be done inside the EVC framework.
- The control in mode space treats each "disturbance direction" with a different dynamics.
- Simple anti-windup technique is not effective for multivariable systems.

#### SYSTEM IMPLEMENTATION

- The current LNLS machine will be used as a "test bench" for orbit correction schemes for Sirius.
- The use of commercial hardware allowed quick development → few months with reduced manpower to put the hands on the beam!
- The **bottleneck today is the corrector power supplies response** (should be replaced until the end of 2011)

#### FUTURE STEPS (while power supplies were not replaced)

- 1. Identify the disturbance spectrum
- 2. Develop new diagnostic tools with the new hardware capabilities
- 3. Continue to optimize the dynamic control in mode space (simulations)
- 4. Investigate more deeply constrained control techniques for multivariable systems