Non-invasive Beam Profile Measurements using an Electron-Beam Scanner

W. Blokland and S. Cousineau

Willem Blokland

for

the Spallation Neutron Source

Managed by UT-Battelle for the Department of Energy

Overview

- SNS Accelerator
- Electron scanner
 - Principle
 - Hardware
 - Software
- Results
 - Images
 - Analysis
 - Comparison
- Conclusion and Plans

Non-invasive Beam Profile Diagnostics at SNS

3 Managed by UT-Battelle for the Department of Energy

Electron Scanner Principle

Look at the deflected projection by a charged beam of a tilted sheet of electrons onto a screen

- Neglect magnetic field (small displacement of projection)
- Assume path of electrons is straight (they are almost straight)
- Assume net electron energy change is zero (if symmetric).

$$\rightarrow \quad \frac{d\theta_0(x)}{dx} = \int_L \frac{e}{mv^2} \frac{\delta(x, y)}{\varepsilon_0} dy$$

or, take the derivative to get the profile

Imperfections estimated at 5-10%.

[1] Paul D. Goldan "Collisionless Sheath---An Experimental Investigation", Phys. Fluids 13, 1055 (1970), DOI:10.1063/1.1693008

[2] Tsyganov, E.; et al A., "Electron beam emittance monitor for the SSC," *Particle Accelerator Conference, 1993., Proceedings of the 1993*, vol., no., pp.2489-2491 vol.3, 17-20 May 1993
[3] Aleksandrov, et al "Feasibility Study of Using an Electron Beam for

Profile Measurements in the SNS Accumulator Ring," Particle Accelerator Conference, 2005. PAC 2005. Proceedings of the , vol., no., pp. 2586-2588, 16-20 May 2005

Simulation of electron paths

5 Managed by UT-Battelle for the Department of Energy

Simulation of electron paths

Electron Scanner Layout

Electron Scanner hardware by Budker Institute of Nuclear Physics: Dmitriy Malyutin, Sasha Starostenko, Sasha Tsyganov

Joint design by BINP and SNS.

7 Managed by UT-Battelle for the Department of Energy

Hardware: Electron Scanner

Electron scanner now covered with magnetic shield

Ring Beam Pipe

8 Managed by UT-Battelle for the Department of Energy

Hardware: Electron Scanner

Electron Scanner parts

9 Managed by UT-Battelle for the Department of Energy

Hardware: Transformer

Arcing of HV Transformer

10 Managed by UT-Battelle for the Department of Energy

Hardware: Service Building Electronics

Electron scanner Rack in the Service Building

11 Managed by UT-Battelle for the Department of Energy

LabVIEW Application

- Control, acquire, and calculate the profiles
- Interface to EPICS

ational Laboratory

Software

Instant beat		- 0 5	llev lle ek		1 Ci	
	Heat Car	nu size	ver Heat		ami bize	
5.1	U		6.2		U	
Horizontal			Vertical			
HVM 🔵 6.7	00 Corr x 💮 0.	.000	HYM 🌔 6.800	🗌 Corr x 🌖	0.000	
Heat 💮 5.1	00 Corr y 💮 0.	210	Heat 💮 6.200	Corr y 🎒	-0.060	
Scan 1000 💮 2.3	00 Quad 1 🔵 0.	488 Scan	1000 💮 2.200	Quad 1 💮	0.440	
Scan 2000 🗍 6.5	00 Quad 2 💮 -0	.334 Scan	2000 💮 6.000	Quad 2 💮	0.260	
Timing						
Scan Ver Delay ↓ 20023 ActiveH Length ↓ 20	Scan Hor HVM ↓ 20025 ↓ 20003 ↓ 20 ↓ 20	Latch	Cam AD 17600 ↓ 20000 20 ↓ 20	C NA D ‡0 ↓0	NA 2019 2019	
Horizontal Vertical						
HVM 💮 -0.004	Corr x 👌 0.07	9	нүм 싉 о.	011 Corr >	. 🕘 0.007	
Heat 쉬 0.110	Corr y 🕘 0.26	0	Heat 🕣 -0	.075 Corr y	-0.090	
Scan 1000 💮 0.366	Quad 1 🗍 0.48	3 <u>s</u>	5can 1000 💮 0.	102 Quad	1 🔵 0.431	
Scan 2000 🗍 -0.296	Quad 2 🕘 -0.25	50 !	5can 2000 分 0.	191 Quad 2	2 🕣 0.292	

Control of accelerating voltages, cathode current, deflector voltages, magnets and timing.

Command History

15:45:37 - Setup [Timing,739,15] -> No Error 15:45:37 - Update [Images,File,0739_14] -> No Error 15:45:36 - Update [Images,Display] -> No Error 15:45:36 - Acquire [Images,Camera] -> No Error 15:45:35 - Setup [Timing,739,14] -> No Error 15:45:35 - Update [Images,File,0739 13] -> No Error 15:45:34 - Update [Images,Display] -> No Error 15:45:34 - Acquire [Images,Camera] -> No Error 15:45:33 - Setup [Timing,739,13] -> No Error 15:45:33 - Update [Images,File,0739 12] -> No Error 15:45:32 - Update [Images,Display] -> No Error 15:45:32 - Acquire [Images,Camera] -> No Error 15:45:31 - Setup [Timing,739,12] -> No Error 15:45:31 - Update [Images,File,0739 11] -> No Error 15:45:30 - Update [Images,Display] -> No Error 15:45:30 - Acquire [Images,Camera] -> No Error 15:45:29 - Setup [Timing,739,11] -> No Error 15:45:29 - Update [Images,File,0739 10] -> No Error 15:45:28 - Update [Images,Display] -> No Error 15:45:28 - Acquire [Images,Camera] -> No Error 15:45:27 - Setup [Timing,739,10] -> No Error 15:45:27 - Update [Images,File,0739_09] -> No Error 15:45:26 - Update [Images,Display] -> No Error 15:45:26 - Acquire [Images,Camera] -> No Error 15:45:25 - Setup [Timing,739,9] -> No Error 15:45:25 - Update [Images,File,0739_08] -> No Error 15:45:24 - Update [Images,Display] -> No Error 15:45:24 - Acquire [Images,Camera] -> No Error 15:45:23 - Setup [Timing,739,8] -> No Error 15:45:23 - Update [Images,File,0739_07] -> No Error n an an an third an Ìr

Sequencer to support scanning through multiple bunches and adjustments while scanning

Images

Marker cut-outs

onal Laboratory

No proton beam, vertical profile

Image of horizontal curve

14 Managed by UT-Battelle for the Department of Energy

Analysis

- Find the curve (x,y) points
- Fit a spline to these points

Find peak in each column

- Take the derivative of this spline -> profile
- Fit a model-based function to profile to remove imperfections
- Correct width to assumed angle of deflectors (20% smaller for horizontal, 20% larger for vertical)

Analysis: Finding the curve

16 Managed by UT-Battelle for the Department of Energy

PAC2011, March 28 to April 1, 2011 in New York, USA

ional Laboratory

Analysis: Fitting a spline

itional Laboratory

Analysis: Fitting a spline

Overlay of camera image with peaks and spline fit

onal Laborator

Analysis: Take derivative

Take derivative of peaks Take derivative of spline fitted to the peaks Take derivative of spline fitted to the peaks and fit to model-based function

Results

3D plot of Turn 720 at ~11uC

20 Managed by UT-Battelle for the Department of Energy

Data

Vertical Profiles (spline derivative)

21 Managed by UT-Battelle for the Department of Energy

Data

Horizontal Profiles (spline derivative)

Model-based Function

Goals:

- Reduce noise
- Extrapolate the tails
- Use integral version of model to fit directly to curve

Model-based function

The injection painting and space charge effects are the main contributors to the transverse profile in the ring and transfer line to target.

RTBT WS24 Profile: Double Super-Gaussian

$$f_{DSG}(x) = a_1 \cdot \exp\left(-\left(\frac{|x-\mu|}{\sigma_1}\right)^{n_1}\right) + a_2 \cdot \exp\left(-\left(\frac{|x-\mu|}{\sigma_2}\right)^{n_2}\right) + sl \cdot x + o$$

24 Managed by UT-Battelle for the Department of Energy

Results: Model-based function

for the Department of Energy

Comparison

	FWHM Hor (mm)	FWHM Ver (mm)
Wire Scanner	37.6	51.5
ELS Spline	37.8	56.6
ELS Model	38.8	57.8
Difference	~3%	~12%

Previous Study:

 Bumping the center of the beam and comparing BPM measurements with ES profile movements agrees to within 20%

ES Profile from all slices of bunch and slope and baseline corrections

Conclusions and Plans

Provides non-intrusive measurement of the transverse and longitudinal profile of the proton beam almost anywhere in the accumulation cycle.

- Open chamber to measure deflector angles
 - Adjust quads if necessary
 - Tilt deflectors even more to increase aperture
- Upgrade HV transformers to 75kV
- Upgrade cameras to increase sensitivity to lower cathode heating to extinguish blobs
- Electron Scanner successful, considering tomography

