

A VUV FEL for Producing 70 – 100 MeV

Circularly Polarized Compton Gamma-ray Beams

Y. K. Wu

Duke FEL Laboratory

Triangle Universities Nuclear Laboratory

Duke University

March 29, 2011

Acknowledgment:

DFELL, Duke University

J. Li, S. Mikhailov, V. Popov

M. Busch, M. Emanian, J. Faircloth, S. Huang, G. Swift, P. Wang, P. Wallace, W. Z. Wu, M. Ahmed, H. Weller, C. Howell (TUNL and DFELL)

Work supported by U.S. Grants

DOE DE-FG02-01ER41175 and AFOSR MFELFA9550-04-01-0086

PAC'11, New York, March 28 – April 1, 2011

VUV FEL Research and High Energy Gamma-ray Beams

- Overview of Duke FEL Lab Accelerator Facility
- New VUV FEL Development: 190 nm lasing
- VUV FEL Driven Compton Gamma-ray Beams: 70 100 MeV
- Research Programs using HIGS Beams
- VUV FEL Upgrade

DFELL, Duke University

PAC'11, New York, March 28 – April 1, 2011

VUV FEL Development

Improving Resonator Stability: In-cavity Apertures **Mirror Surface Deformation:** Wiggler higher-order harmonic power loading **Electron Beam Aperture** Mirror **WIG01** WIG03 WIG03 Mirror **WIG02** 6.72 m 6.72 m 6.72 m 16.54 m 4.58 m Lw = 4 m22.29 m Collision Point

DFELL, Duke University

PAC'11, New York, March 28 – April 1, 2011

VUV FEL Development

Improving Resonator Stability: In-cavity Apertures

In-cavity, Water-cooled apertures for Harmonic Radiation Control

Commissioned for User Operation (Sep., 2008)Part of Ph.D. thesis work of Senlin HuangDFELL, Duke UniversityPAC'11, New York, March 28 – April 1, 2011Y.K. Wu

VUV FEL Development

190 nm FEL Lasing

DFELL, Duke University

PAC'11, New York, March 28 – April 1, 2011

DFELL, Duke University

PAC'11, New York, March 28 – April 1, 2011

HIGS Performance HIGS Capabilities for User Programs in 2011

Parameter	User Beam Capabilities		Comments
E-beam Configuration E-beam current [mA]	Symmetric two-bunch beam 50 - 100		High flux configuration
Gamma-ray Energy [MeV]	1 – 100		with mirrors 1064 to 190 nm Available with existing hardware Extending wiggler current to 3.5 kA
(a) No-loss mode	Total flux [γ/s]	Collimated flux ($\Delta E/E \sim 5\%$) [γ/s]	Both Horizontal and Circular Polarizations
1 – 3 MeV ^(a) 3 – 5 MeV 5 – 13 MeV 13 – 20 MeV	$\begin{array}{c}1 x 10^8 - 1 x 10^9 \\6 x 10^8 - 2 x 10^9 \\4 x 10^8 - 4 x 10^9 \\1 x 10^9 - 2 x 10^9\end{array}$	$\begin{array}{c} 6 \times 10^{6} - 6 \times 10^{7} \\ 3.6 \times 10^{7} - 1.2 \times 10^{8} \\ 2.4 \times 10^{7} - 2.4 \times 10^{8} \\ 6 \times 10^{7} - 1.2 \times 10^{8} \end{array}$	
(b) Loss mode 21 – 54 MeV 55 – 65 MeV 66 – 100 MeV	Total flux $[\gamma/s]$ > 2 x 10 ⁸ (b) ~ 2 x 10 ⁸ (b) 1 - 2 x 10 ⁸ (b) (c)	Collimated flux ($\Delta E/E \sim 5\%$) [γ /s] > 1 x 10 ⁷ ~ 1 x 10 ⁷ 0.5 - 1 x 10 ⁷	To extend mirror lifetime, circular polarization is preferred 1 st user experiment: March 2011 190 nm: Demonstrated: Sep, 2010

^(a) With present configuration of OK-5 wigglers separated by 21 m, the circular polarization is about ¹/₂ the values here.

^(b) The flux in loss mode is mainly limited by injection rate.

^(c) Thermal stability of FEL mirror may limit the maximum amount of current can be used in producing FEL lasing, thus flux.

Highest Total Flux (2010): >2x $10^{10} \gamma/s @ 9 - 11 \text{ MeV}$

H. R. Weller *et al.*, "Research Opportunities at the Upgraded HIγS Facility," Prog. Part. Nucl. Phys. Vol 62, Issue 1, p. 257-303 (2009).

DFELL, Duke University

PAC'11, New York, March 28 – April 1, 2011

User Research Programs at HIGS Facility

Nuclear Physics Research

Astrophysics Research

Novel Detector Development and Calibration

Industrial and Medical Applications

DFELL, Duke University

PAC'11, New York, March 28 – April 1, 2011

"

В

No model-independent measurement exists $4\pi\omega^2\alpha_E$ 20-60 % Errors

$4\pi\omega^{2}\beta_{M}$

"100 MeV and beyond" Research Program @HIGS

 To measure static, electromagnetic polarizabilities, and spin polarizabilities of nucleons.

Compton Scattering to extract polarizabilities of proton and neutron

To study chiral dynamics via pionphoto production

Courtesy: Mohammad Ahmed, Henry Weller, Rory Miskimen, Jerry Feldman, Haiyan Gao, Don Crabb, Blaine Norum

Effective field theories provide a powerful framework fo solving physical problems that are characterized by a natural separation of distance scales. They are particularly important tools in QCD, where the relevant degrees of freedom are quarks and gluons at short distances and hadrons and nuclei at longer distances. Indeed, at energies below the proton mass, the most notable features of QCD are the confinement of quarks and the spontaneous breaking of QCD's chiral symmetry. Chiral perturbation theory is an effective field theory that incorporates both; when applied to mesons it is a mature theory. Perhaps the most striking advances in chiral effective field theory have come in its application to few-nucleon systems. This has yielded precise results for nucleon-nucleon forces and also produced consistent threenucleon forces. This opens the way for precision analyses of electromagnetic reactions on light nuclei, e.g., the Compton scattering reactions on systems having two or three nucleons that will be explored at the High-Intensity Gamma-Ray Source (HI γ S) facility at Duke University.

[US Nuclear Physics Long Range Plan: QCD and the Structure of Hadrons, p 18] "

Scintillating Polarized Target

Compton Scattering to extract spin-polarizabilities of proton and neutron Measurement of the spin-stiffness of the nucleon

No measurements exist of the spin polarizabilities

HIGS Nal Detector Array (HINDA)
(\$2M system)Courtesy: Mohammad Ahmed, Henry Weller, Rory Miskimen,
Jerry Feldman, Haiyan Gao, Don Crabb, Blaine Norum

VUV FEL Upgrade

Switch-yard for OK-4 and OK-5 Wigglers

FEL Lasing: ~170 and 150 nm HIGS Operation: 100 – 160 MeV operation with OK-5 FEL

DFELL, Duke University

PAC'11, New York, March 28 – April 1, 2011

Summary

Duke FEL Capabilities

- Operation Range: 1060 nm 190 nm
- Linear and Circular Polarization
- CW and Pulsed Operation

HIGS Capabilities

- Energy Tuning: 1 100 MeV
- Maximum Total Flux: > 2 x $10^{10} \gamma$ /s around 10 MeV
- Maximum Spectrum Flux: : ~ $10^3 \gamma$ /s/eV around 5 10 MeV
- High Energy Resolution: 0.8% (< = 5 MeV)
- Polarization: linear, circular; switchable polarization

Future Development

- VUV FEL Lasing: ~170nm, ~150 nm
- Higher Gamma-beam Energy: 110 160 MeV