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Overview

• Motivation

• Calculating eigen-emittances and correlations

• Numerical results

• Prospects for implementation
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Motivation
• Next generation light sources, such as Los Alamos’ MaRIE (Matter and

Radiation in Extreme) need low transverse emittances, e.g. 0.15 µm or less.

• It has been demonstrated that it is possible to make emittance in one

dimension small at the expense of that in another dimension, using a

flat-beam transform or emittance exchange (e.g. Kim, 2003; Carlsten &

Bishofberger, 2006; Sun et. al., arXiv:1011.1182).

• Eigen-emittance values correspond to the emittances of an uncorrelated

beam.

• We want to see if it is possible to tailor the eigen-emittances to small values

by introducing correlations at the cathode. We could then remove the

correlations and to recover small transverse emittance values.
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Eigen-Emittances

• Invariant under linear beam transport.

• Can be obtained from the beam matrix Σ as |λj| using the

characteristic equation (see e.g. Dragt, Neri & Rangarajan,

1992)

det(JΣ− iλjI) = 0, (1)

where I is the identity matrix and J is the skew-symmetric

matrix with non-zero entries on the block diagonal of form,

J2 =

(
0 1

−1 0

)
. (2)
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Introducing beam correlations

• Canonical coordinates: s = (x, px, y, py, z, pz)

• Beam matrix: Σ = 〈sjsk〉
• Correlations (“C-matrix”) (Yampolsky et. al., arXiv:1010.1558):

C =



0 0 c13 c14 c15 c16

0 0 c23 c24 c25 c26

c31 c32 0 0 c35 c36

c41 c42 0 0 c45 c46

c51 c52 c53 c54 0 0

c61 c62 c63 c64 0 0


• Correlated beam: Σ = (I + C)Σ0(I + C)T
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Two Correlations

• Two is the minimum number of correlations needed to make two

eigen-emittances small. This minimal scenario will also require

the least optics to remove the correlations and recover small

emittances.

• Two correlations:

Σ = (I + C2)(I + C1)Σ0(I + C1)
T (I + C2)

T

≡ (I + C)Σ0(I + C)T

• If C1C2 = C2C1 correlations are independent

• If C1C2 6= C2C1 correlations may be dependent or

independent, depending on the order in which they are applied.
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It’s Possible!
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The “C” Matrix

Column Index

x0 px0 y0 py0 z0 pz0

1 2 3 4 5 6
R

ow
In

de
x

x 1

px 2

y 3

py 4

z 5

pz 6

Matrix entries of the same color (independent correlations) can be combined to

produce two small and one large eigenemittance. All combinations of dependent

correlations also work.
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Possible correlations

• We’ve identified minimal correlation scenarios that give two

small eigen-emittance values.

• Not all realizable in practice.

• Difficult to imagine producing correlations that depend on

momentum.

• Angular momentum correlations occur as px-y and py-x

together.

• py-z or px-z difficult to create at cathode.
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Possibilities

• Independent correlations: z-x and pz-y or z-y with pz-x.

• Dependent correlations: Possible combinations of coordinate

correlations and/or energy with position.
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Challenges

• Nonlinear evolution.

• Size of correlation required - practical to implement? Example:

aspect ratios of beams.

• Any additional correlations that are inadvertently introduced in

practice.
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Summary

• Eigen-emittance approach offers an opportunity to tailor a

beam’s emittance values.

• Possible to achieve two small eigen-emittance values in theory

using minimal correlations.

• At least some scenarios would be difficult to implement.

• We have identified possibilities that warrant further investigation.

 


