## **R&D status** for in-situ plasma surface cleaning of SRF cavities at SNS

PAC11, New York March 31, 2011

S-H. KIM, M. Crofford, M. Doleans, J. Saunders (SNS/ORNL) J. Mammosser (JLAB)





## **Motivation for in-situ processing**

#### Medium term

- Reach 1GeV + energy reserve
- Increase high beta cavity gradients by about 2 MV/m in average

## Long term

- 42-mA beam loading with 2<sup>nd</sup> target station
- Efficient utilization of RF power: ideally constant RF power/cavity is preferred → narrower performance scattering
- Develop a cost effective method with minimal impact on machine operation



### **SNS SRF cavity performance statistics**

- Electron loadings (mainly field emission)
  - Collective effects
  - Thermal instability at the end group



#### • Field emission

- Not a fundamental limit in theory but the major limitation in multi-cell cavities in high-duty operational machines.
- Performance scattering.
- Contamination
  - Contaminants entered during processing/assembly
  - Enhancement of field emission with condensed/ absorbed gases and/or oxide layer/boundary layer
  - Locations of field emitters are random/statistical
- Field emitter processing characteristics
  - may change over time, possibly harder after conditioning/commissioning

Ex. Clear improvement at an initial He-processed cavity in



## Helium vs. Plasma processing

- He-processing
  - high gradient, high energy electron (FE), no space plasma,
  - Few statistics on in-situ helium processing at Ea> 10 MV/m
  - No in-situ experience in pulsed mode w/ Couplers

## Plasma cleaning

- low voltage glow discharge, low energy electron, space plasma & radical
- Lack of experiences w/ SRF cavities
- Routine & major cleaning method in semi-conductor industry, some of fusion devices and vacuum devices



## Helium processing with H01

- H01: worst performing CM. Largest x-rays
  - Lowest operating gradients (~10 MV/m or less for operation) limited by field emission
- Tried with cavity A in H01
- Helium processing is not adequate for SNS CM
  - Initial Start-up; Showed about same behavior as baseline → at ~9MV/m quench (end group)
  - Both Thermal Diodes (TDs) on HOMA and HOMB showed spikes up to 8K
  - Ended at ~8 MV/m after several hours of trials
  - Aggressive MP at HOM couplers  $\rightarrow$  stop helium processing





PAC11, New York, March 31, 2011

#### **Preliminary experiment**





8 Managed by UT-Battelle for the U.S. Department of Energy



Complete removal of carbon/oxide layer +Removal of absorbed/trapped (H2, H2O) +Some effect similar with baking

# **Preliminary experiment for plasma generation in the SNS cavity**



300W forward 200W reflected 1e-4 torr



# Plasma processing with H01 test (First Attempt)

- Investigate possible in-situ processing
- The First attempt for the SNS cryomodules
  - No optimization studies
  - Explore the possibility
  - Comparisons of radiation before and after processing
- Very mild attempt
- Some unknowns
  - Copper damage (FPC, HOM feedthrough)?
  - Coupler window coating?
  - Unknown solid-state byproducts?



## Radiation/electron activity diagnostics in the Test Cave





- Ionization Chamber
- Internal Ionization Chamber
- Phosphor Screen, Camera, Faraday Cup



#### H01 baseline test in the Test Cave

 All four cavities showed large amount radiations (onset ~6MV/m)



#### H01 baseline test in the Test Cave

 All four cavities showed large amount radiations (onset ~6MV/m)



#### **Plasma Processing**

- Very mild attempt; 10-20 W forward power, 60 Hz, 1-ms pulse at 4K, 1e-4 torr with helium gas
- Performed processing on 3 out of 4 cavities for < 5 min.











us

#### **Partial warm history after processing**

Much bigger amount of gases than normal warm-up (lots of H2, O2 and hydro-carbons) Continued until 150 C



#### Hydro carbon (44) and its fragments at around 150 C



<u>JE</u> instory

## **Radiation (before and after processing)**

#### Radiation reduced by factor of 100 Showed promising results for in-situ processing

| X New BLM        |   |                |     |               |  |
|------------------|---|----------------|-----|---------------|--|
| 0.4 Loss         |   |                |     |               |  |
|                  |   |                |     |               |  |
| Eacc=1           | 0 |                |     |               |  |
|                  |   | 100<br>10 usec | 15  | i0 200        |  |
| Rads/Pulse       |   | Rads/Sec       |     | Rads/Sec/Volt |  |
| <u>5.982e-07</u> | 0 | 3.743e-05      | 0   | 1.430e-01     |  |
| 2.979e-06        | 1 | 1.814e-04      | 1   | 1.110e-01     |  |
| 9.257e-06        | 3 | 5.848e-04      | - 2 | 3.480e-01     |  |
| 3.272e-05        | 4 | 1.954e-03      | 4   | 1.510e-01     |  |
| 8.434e-05        | 5 | 5.077e-03      | 5   | 1.910e-01     |  |
| 1.534e-04        | 6 | 9.329e-03      | 6   | 8.200e-02     |  |
| 1.824e-04        | 7 | 1.083e-02      | 7   | 8.600e-02     |  |



## **Radiation (before and after processing)**

Radiation reduced by factor of 100 Showed promising results for in-situ processing



## **R&D** Main Objectives

- Apply plasma surface modification to decrease effect of field emission on superconducting niobium surfaces
  - Room temperature processing
  - Processing parameter optimization
    - Uniform processing
    - Repetitive processing
    - Understanding of processing
  - Systematic study
    - Figure out what we can do/can't do
    - Find a statistically optimal procedure



#### Tools





#### **Summary**

- The first attempt of plasma processing w/ H01

   Promising results
- R&D program
  - Hardware set-ups are in progress
  - Develop a procedure for statistical improvements
  - Expected gains (preliminary)
    - Removal of absorbed/trapped gases
    - Removal of oxide layer
    - Removal of small-size contaminants via physical bombardment or chemical reaction
    - Low temperature baking effect

