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Nb1.3 GHz 9-cell cavity to be 

used for European XFEL
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While experimental results at LANL and SLAC are 

mostly discussed in this talk, a lot of people have been 

involved in this study.   Many thanks to them!!

 LANL
• Nestor Haberkorn and Leonardo Civale (MPA-STC): DC magnetization measurements, 

• Ray DePaula and Isaiah Apodaca (MPA-STC): Alumina coatings

• Roland Schulze and his student (MST-6): AES/XPS analyses

• Dave Devlin (MST-7): discussions on cavity coating techniques.

• Marilyn Hawley (MST-8): AFM analyses and discussions

 External collaborations
• Jiquan Guo, Sami Tantawi and their co-workers (SLAC): high-power RF testing at SLAC

• Thomas Proslier and Mike Pellin (ANL): some ALD coatings

• Brian Moeckly and Chris Yung (STI): preparation of MgB2 samples using reactive co-evaporation 

technique

• Peter Kneisel, Grigory Eremeev, Binping Xiao (Jlab): providing Nb materials and Rs measurements

• Akiyoshi Matsumoto, Hideki Abe and Minoru Tachiki (NIMS, Tsukuba, Japan): discussions

• Eiichiro Watanabe, Daiju Tsuya and Hirotaka Ohsato (NIMS, Tsukuba, Japan): ALD of alumina layers

• Toshiya Doi, Takafumi Nishikawa, Tomoaki Nagamine and Kazuki Yoshihara (Kagoshima 

University, Japan):  preparation of some MgB2 samples using E-beam co-evaporation technique

• Hitoshi Inoue (KEK, Tsukuba, Japan): vacuum baking of some Nb samples for coating
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Background / motivation

 Niobium (Nb) Superconducting RF (SRF) cavities 

have been replacing Cu cavities for the last ~30 years 

due to better energy efficiency and other benefits.

 The highest accelerating gradient (Eacc) of existing 

accelerators as user facilities is ~ 20 MV/m.

 In the last few years, the technology to achieve >35 

MV/m with 1.3 GHz 9–cell cavities has been maturing

 But, it is doubtful that we can get >50 MV/m SRF 

cavities in a practical sense using Nb technology (a 

traveling wave structure might have a chance, but it 

will not be discussed in this talk.)
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What sets the fundamental limit of Nb SRF cavities?

 The fundamental limit that prevents niobium cavities 

from reaching >50 MV/m is the thermodynamic critical 

magnetic field of Nb, Hc  2000 Oe (Bc  µ0Hc = 200 mT)
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Hc1 sets practical limit of SRF technology
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Cornell 1.3 GHz Re-entrant cavity

[Geng et al., Proc. PAC’07, p. 2337]
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Concept of field enhancement 

with a single layer of MgB2

Insulating layers

Gurevich’s innovative idea: to overcome the fundamental limit of Nb 

cavities by using multilayers of superconducting/insulating thin films 

Problem: the thinner the layer, 
the smaller the field screening

Solution: multilayers to produce a 
“cascade” field screening effect

Gurevich only considered the limit d<<l

Strongest Hc1 enhancement, but

• many layers may be needed

• coating curved walls with uniform multilayers

of very thin layers is challenging 

Each layer reduces 

the field further, 

until it drops below 

the Hc1 of Nb

SC layer

H = 3550 Oe
H = 1700 Oe
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The key of Gurevich’s proposal is that Hc1 in parallel 

with the material surface can be increased using thin 

films if the thickness d ~ l (penetration depth) or thinner
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[Gurevich, APL 88 (2006) 012511]


l

ln
4 2

0
1


cH (d >> l)


~ln

2
2

0
1

d

d
H c


 (d << l)

H
c
1
(d

/l
)/

H
c
1
(

)

1

d/l1

L. Civale et al.,

PRB 48 (1993) 7576

(general expression)

H

d

Same as in the cavity : coherence length



l
 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D Slide 10

The walls of a superconducting cavity must remain free of 

vortices.  If not: RF field  vortex oscillations  dissipation 

 drastic Q decrease

d  l

d

H

B(x)

B=0

l

d >> l

Energy cost of expelling field:  H

Energy of a vortex: H independent

Hc1: vortex nucleation becomes

thermodynamically favorable

Superconducting film with H//surface

B≠0

Cost of expelling field decreases

Hc1 increases (thermodynamics)

Cavities must operate below Hc1

Possibility: coat the inside 
of the cavity with a 
superconducting thin film
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Hc1 of 300 nm MgB2 film shows higher Hc1 than Nb by ~25 % !

At 4.5 K, the lowest measured temperature, Hc1 > 2000 Oe

Hc1(~300 nm MgB2 film)> Hc1(bulk Nb) 

MgB2 films

from STI

Converted

Using

Hpeak /Eacc = 40

500 nm

SQUID magnetometry

at LANL
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“raw data”
(only input 
parameters 
are L & W)
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Magnetization measurements for <100 nm films have been difficult.  We 

are considering a new method to detect field of  vortex penetration into 

very thin films & multilayers based on ac transport techniques

Standard method:

SQUID magnetometer to detect

deviation from Meissner response

Meissner state:

m=-(H/4)Veff  deff

deff  d-2ltanh(d/2l)
H

d

Problem:
Very small signal.
Present resolution:
d~100nm (for l~100nm) V

oscillations

Proposed alternative method:

Lock-in detection of voltage due to vortex 

oscillations driven by ac electric currents

vortices

Sensitivity does not 
decrease for small d
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RF measurements of 2-inch (~5 cm) diameter wafers (~1 

mm thick) have been carried out at SLAC using 11.4 

GHz  pulsed power (~1.6 µs) [J. Guo, S. Tantawi et al.]

Hemi-spherical TE013–

mode cavity with magnetic 

fields in parallel with the 

sample surface

Sample: <1.5 mm thick

Cold headTemperature sensor

15

Typical distribution of 

superconducting and normal-

conducting regions after quench

Radial H profile
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Some results from Nb samples have shown that surface 

condition affects the surface resistance (Rs) and quench 

field [J. Guo et al., poster TUP102 in this conference]
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Q0 vs. T of LANL single-grain sample, polished to Ra <1 nm
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QL vs. Hpeak of a FNAL fine-grain sample, indicating 

thermal quench due to high surface resistance
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Thermal quench
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A LANL single-grain, polished and baked sample, has 

shown the highest quenching field (170-180 mT) so far

Slide 19

3 K

Magnetic quench
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So, what about MgB2 ?

Slide 20

11.4 GHz

MgB2 alone shows very low resistance

But, not when coated on Nb with an insulator

BCS resistance at 11.4 GHz at 5 K ~ 1E-4, at 3 K ~ 1.5E-5 ohm
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300 nm MgB2 films have shown low quenching field (250 

Oe) at SLAC tests, which is puzzling, considering Hc1

>2000 Oe from DC magnetization measurements

Slide 21

Upper limit of Q0 due to the copper host cavity ~ 3.5E+5

MgB2(300nm)/Sapphire (430µm)

Is this quench thermal 

or magnetic?
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Issues on coating

 Degradation of Nb surface due to decomposition of 

stable natural Nb2O5 layer into a thick lossy NbOx 

layer during coating processes at elevated 

temperatures (e.g., ALD Alumina at 300-345 ˚C and 

reactive co-evaporation MgB2 at 550 ˚C) 

 Inter-diffusion of elements (e.g., O, Al, Mg, etc.) that 

degrade the quality of MgB2 and increase RF losses

Slide 22
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Actual 

structure

Sample M10061 (ALD Al2O3 10nm / 

MgB2 50nm) x4 / sapphire

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

Sputter Depth (nm)

A
to

m
ic

 C
o
n
c
e
n
tr

a
ti
o
n
 (

%
)

B1

O1

Mg2

Al2

Sapphire

Alumina (10nm) x 4 with Atomic Layer Deposition at 345 ˚C 

Intended 

structure

B

O

Mg

Al

MgB2 (50 nm) x 4 with reactive co-

evaporation at 550 ˚C

10

0

20

30

40

50

60

70

Depth from surface (nm)

0 50 100 150 200 250 300 350

B B
B

Mg

Mg

10

0

20

30

40

50

60

70

Inter-diffusion 

is a problem



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

0

5 10
4

1 10
5

1.5 10
5

2 10
5

2.5 10
5

3 10
5

3.5 10
5

0 5 10 15 20 25 30 35

S31-multilayer MgB2

Q vs T, low power and high power

Low power test
8mT
6mT

Q
0

T

Q0 of single layer MgB2

SLAC test results of 

[Alumina(10nm)/MgB2(50nm)]x4/sapphire structure 

showed degradation of MgB2 and quench field

Slide 24

1 10
5

1.5 10
5

2 10
5

2.5 10
5

3 10
5

3.5 10
5

6 7 8 9 10 11

S31-Multilayer MgB2

Q vs H

T=3K

Ql Q0

Q
s

Hpeak (mT)

Q0 vs. T at low power Q0, QL vs. Hpeak

Quench at ~93 Oe3.5E+5

Q0

QL

3.5E+5

Q0

Hpeak (Oe)

600

T (K)
70 80 90 100 11010 20 30

Tc lowered from 39 K

~2 mΩ vs. 

<100 µΩ



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Conclusion

 Hc1 , a practical limit of SRF cavities, can be increased 

by thin superconductor films.  A >25 % higher Hc1

(>2000 Oe) than bulk Nb with 300 nm MgB2 films at 

4.5 K was demonstrated.  Found that effective 

thickness must be considered for a layered structure!

 High-power RF tests at SLAC have shown low quench 

field of 250 Oe with 300 nm MgB2 films, which needs 

to be understood. (>300 Oe has been reported 

elsewhere. )

 Preventing the increase of RF losses due to the 

degradation of Nb surface and coated 

superconductor will be the next step of development.
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Thanks to our sponsors!
Defense Threat Reduction Agency (past)

DOE Office of Science/Nuclear Physics (current)

Thanks for your attention!
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