High-Power Options for LANSCE

R. W. Garnett, L. J. Rybarcyk, D. E. Rees, T. Tajima

Accelerator Operations and Technology Division

E. J. Pitcher

Materials Test Station Project Office, Los Alamos Neutron Science Center

Los Alamos National Laboratory

2011 Particle Accelerator Conference New York, New York March 31, 2011

UNCLASSIFIED

Abstract

The LANSCE linear accelerator at Los Alamos National Laboratory has a long history of successful beam operations at 800 kW. We have recently studied options for restoration of high-power operations including approaches for increasing the performance to multi-MW levels. In this paper we will discuss the results of this study including the present limitations of the existing accelerating structures at LANSCE, and the high-voltage and RF systems that drive them. Several options will be discussed and a preferred option will be presented that will enable the first in a new generation of scientific facilities for the materials community. The emphasis of this new facility is "Matter-Radiation Interactions in Extremes" (MaRIE) which will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges.

UNCLASSIFIED

Slide 1

Outline

- LANSCE Facility Overview
- Motivation MTS & MaRIE/FFMF
- Existing Limitations
- High-Power Options
- Our Preferred Option

UNCLASSIFIED

LANSCE Facility Overview

Linac Performance - Historical, Demonstrated & Present

Historical Performance

- 120 Hz x 625 μ s beam gates; 7.5% duty factor (100-Hz H⁺, 20-Hz H⁻)
- Combined and simultaneous H+/H- operation (limited by peak RF power)
- Typical maximum peak beam current (H+): 16.5 mA
- RF duty factor: ~ 10%
- 800-kW average beam power (800 MeV,1-mA average H+ current)
- High-power operation halted in 1998

• Demonstrated Performance (non-coincident, H+ only)

- RF duty factor: ~12% (1980's?)
- Beam gates: 1225 μs (800 MeV, 80 Hz, LPSS Demo 1996)
- Peak H+ beam current: 21 mA (800 MeV, LPSS Demo 1996)
- Demonstrated 1-MW Average to Area A (800 MeV,120-Hz H⁺, 1983)

Present Performance

- 60 Hz Operation (limited by 7835 in DTL 201-MHz RF system)

Linac Risk-Mitigation efforts will enable a return to highpower operations by 2016 – Restores 120-Hz capability.

Linac Risk Mitigation plans will provide needed linac modernization by 2016.

Install modern, maintainable Instrumentation & Control and Diagnostics systems

Refurbish the 805-MHz RF amplifier systems for the Coupled Cavity Linac (100 - 800 MeV)

- Remediate accelerator structures, supporting equipment and power supplies
- Replace the 201-MHz RF system for the Drift Tube Linac (0.75 - 100 MeV) to restore 120-Hz operation
- 201.25-MHz RFQ Test Stand / Front-End Replacement

Risk Mitigation Projects will ensure reliable operations and enable high-power applications.

Matter-Radiation Interactions in Extremes (MaRIE) is the LANSCE future.

Our motivation to deliver higher-power beams is to produce intense neutrons for MTS and FFMF.

- 1 MW Materials Test Station (MTS)
 - Baseline design for the MTS; achieves 4.5% per calendar year fuel burnup in highly enriched fuel and 18 dpa/yr damage in steels.
 - 800 MeV, 4400 hrs of full beam power/year
- 2 MW Fission-Fusion Materials Facility (FFMF) / IFMIF Equivalent
 - IFMIF equivalent neutron flux and irradiation volume; 50 dpa/FPY and 0.3 liter with >20 dpa
 - Achieves 2.5x10¹⁵ n/cm²/s peak flux in fuel irradiation region, 6%/yr fuel burn-up, 28 dpa/yr in iron.
 - Rep Rate \geq 100 Hz, Pulse Length \geq 0.75 ms, 800 MeV \geq Energy \leq 3 GeV
- 5 MW FFMF / JOYO Equivalent
 - Achieves peak neutron flux of 5x10¹⁵ n/cm²/s
 - Would be highest neutron flux in the world; equivalent to JOYO reactor; exceeds BOR-60 (3.4x10¹⁵ n/cm²/s)

- Same operational parameters as 2 MW (rep rate, etc.)

UNCLASSIFIED

Slide 7

The Materials Test Station (MTS) will enable testing fission reactor fuels and structural materials in a fast-neutron environment.

Fig. 4. Physical layout of the beam transport system.

E. J. Pitcher, "The materials test station: A fast-spectrum irradiation facility," *Journal of Nuclear Materials, 377, Issue 1, 30 June 2008.*

UNCLASSIFIED

Slide 8

The MTS/FFMF is the next high-power mission for LANSCE.

Calculated displacement and helium production rates in the MTS at (a) 1-MW and (b) 2-MW beam powers. Also shown is the parameter space covered by the IFMIF-HFTM (blue ellipse).

FFMF in-situ characterization and multi-probe capabilities integrated into the MTS target assembly.

Los Alamos
 NATIONAL LABORATORY

E. J. Pitcher, "Fusion materials irradiations at MaRIE's fission fusion facility," *Fusion Engineering and Design (2011)*

UNCLASSIFIED

Slide 9

Neutron environment requirements and accelerator system reliability/availability drive upgrade paths.

UNCLASSIFIED

Slide 10

Some simple assumptions were made to develop the high-power options.

Operational and accelerator structure limits constrain the upgrade paths to higher average beam power.

Maximum Safe RF Duty-Factor Limits for the LANSCE Linac Structures and RF Systems

	DTL	CCL	201.25 MHz (HVDC PS)	805 MHz (Klystron)
RF Duty Factor	12.4% (structure limited)	12.2% (structure limited)	11.8% (10% beam) – Present 12.5% (10.7% beam) – Post LRM	12.0% (120 Hz, 1 ms)

• DTL

- Poor thermal contact / poor cooling of bellows on drift-tube stems.
- Post-coupler heating may also contribute.
- Significant field errors (measured vs. design at location of tuning slugs)
- Operating set-point errors (assumed ±5% assumed)

• CCL

- Structures cooled via external cooling channels.
- Need to avoid plastic deformation (15% limit)
- Bead pull measurement reveals ±6% field amplitude variations
- Operating set-point errors (assumed ±5% assumed)
- Klystron peak-power and power supply name-plate ratings limit RF duty factor.

Los Alamos
 NATIONAL LABORATORY

UNCLASSIFIED

Slide 12

High-Power Upgrade Options (All assume 100-Hz rep rate, H+)

Option Power Requirements (MW) 1 Increase duty factor 0ption 1 1 Increase duty factor & peak 0ption 2 beam current Max. Beam 1.16 Increase duty factor & peak Power current 2-MW 2 Fix DTL field errors, Increase Option 1 duty factor & peak beam	Length (µs) 770 688 797 922 Risk r	RF Duty Factor (%) DTL, CCL, SCL 12.3, 10.8, N/A 11.3, 9.8, N/A 12.4, 11.0, N/A 13.2, 12.3, N/A nitigation effort	E final (GeV) 0.8 0.8 0.8 0.8 0.8 0.8	I peak (mA) 16.5 18.5 18.5 27.5	$ I_{avg} \\ (mA) \\ 1.25 \\ 1.25 \\ 1.45 \\ 2.5 \\ 2.5 \\ 1.041 $	cryomodules/klystrons N/A N/A N/A N/A N/A
1-MW 1 Increase duty factor Option 1 1 Increase duty factor & peak 0ption 2 beam current Max. Beam 1.16 Increase duty factor & peak Power current 2-MW 2 Fix DTL field errors, Increase Option 1 duty factor & peak beam	770 688 797 922 Risk r	12.3, 10.8, N/A 11.3, 9.8, N/A 12.4, 11.0, N/A 13.2, 12.3, N/A nitigation effort	0.8 0.8 0.8 0.8 0.8 ts will 1	16.5 18.5 18.5 27.5	1.25 1.25 1.45 2.5	N/A N/A N/A N/A
1-MW Option 2Increase duty factor & peak beam currentMax. Beam Power1.16Increase duty factor & peak current2-MW2Fix DTL field errors, Increase duty factor & peak beam	688 797 922 Risk r	11.3, 9.8, N/A 12.4, 11.0, N/A 13.2, 12.3, N/A nitigation effort	0.8 0.8 0.8 ts will 1	18.5 18.5 27.5	1.25 1.45 2.5	N/A N/A N/A
Max. Beam1.16Increase duty factor & peakPowercurrent2-MW2Fix DTL field errors, IncreaseOption 1duty factor & peak beam	797 922 Risk r	12.4, 11.0, N/A 13.2, 12.3, N/A nitigation effort	0.8 0.8 ts will 1	18.5 27.5	1.45 2.5	N/A N/A
2-MW2Fix DTL field errors, IncreaseOption 1duty factor & peak beam	922 Risk r	13.2, 12.3, N/A nitigation effort	^{0.8} ts will i	^{27.5}	2.5	N/A
current, add 201.25-MHz RFO.	Risk r	nitigation effort	is will i	restore	5 1 NAV	
upgrade HPRF & HVDC	700					v capability.
2-MW Option 22Increase duty factor & peak beam current, add 201.25-MHz	/88	12.4, 10.9, 9.7	1.5	17.0	1.33	18/72
RFQ, upgrade HPRF & HVDC, increase final beam		This is our pre	ferred	option	that r	meets
5-MW 5 Increase peak beam current, Option 1, increased RF power to CCL Not Viable	913	the 2-MW MIS	5/FFM	⊦ requ	lireme	ents.
5-MW 5 Increase final beam energy, increase peak beam current, add 402.5-MHz RFQ & 402.5- MHz DTL, Upgrade HPRF, HVDC	913	TBD	1.5	37.0	3.3	18/72
5-MW 5 Increase final beam energy, Option 3 increase peak beam current,	913	TBD	2.0	28.0	2.5	25/100
add 402.5-MHz RFQ & 402.5- MHz DTL, Upgrade HPRF, HVDC		Beyond 2 MV significant up	V requ ograde	uires s.		
• Los Alamos	UNCI	ASSIFIED				Slide 13

The Preferred 2-MW Option (baseline)

- 201.25-MHz RFQ type TBD.
- 18 SNS-like, 805-MHz, β =0.81 (E_0T=15.8 MV/m) SC cryomodules
- Requires replacement of CCL high-power RF systems with 72 (18 x 4; 4 cavities/cryomodule) lower-power klystrons alternatives to be explored.

 Preliminary beam dynamics simulations completed – detailed end-to-end simulations planned.

• Final Beam Energy = 1.5 GeV

Beam Pulse				
Length (µs)	RF Duty Factor (%)	E _{final}	I _{peak}	l _{avg}
/	DTL, CCL, SCL	(GeV)	(mA)	(mÅ)
788	12.4, 10.9, 9.7	1.5	17.0	1.33

UNCLASSIFIED

Slide 14

Preferred 2-MW option has many advantages.

- One-for-one replacement of a CCL module with an SNS-like SC cryomodule.
- Uses existing tunnel wave-guide penetrations minimizes waveguide runs.
- Uses existing klystron galleries.
- Takes advantage of SNS design, non-reoccurring engineering, and R&D.

Upgradeable to higher beam powers.

UNCLASSIFIED

Slide 15

Questions?

UNCLASSIFIED

Slide 16

