Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Electron linac photo-fission driver for rare isotope program at TRIUMF

2011 March 31

Shane Koscielniak & e-linac team

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

ARIEL Project 10-Year Plan: Motivation

To substantially expand RIB program with:

- three simultaneous beams
- increased number of hours delivered per year
- new beam species
- increased beam development capabilities
- New complementary electron linac (e-linac) driver for photo-fission
 New proton beamline
- New target stations and front end
- Staged installation

RIUMF

Photo-fission production of Rare Isotope Beams

RIUMF

Why photo-fission, rather than proton driver?

 Smaller range & depth of products, with emphasis on neutron rich species.

 BUT lower isobaric contamination, lower activation, easier remote handling.

- Fission rate/e << rate/p. But easily compensated in source; 10 mA gun easy.
- • β =v/c=1 from the start. Single RF structure throughout, lowers cost.

PAC'11 NYC NY. THOCN3

E-Linac Physics Requirements

Number of photo-fission/second vs electron energy for 100 kW ebeam on Ta convertor and U target.

For in-target fissions up to 5×10¹³/s

Photo-fission products distribution using 50 MeV 10 mA electrons on Hg convertor & UC_x target

Beam power (MW)	0.5
Duty Factor	100%
Average current (mA)	10
Kinetic energy (MeV)	50

ARIEL Funding

- July 2009 CFI awarded funds for e-linac- with release contingent upon matching funds for labour (NRC) and buildings (Province).
- April 2010, the NRC contribution to Five Year Plan became known: TRIUMF funded at level of M\$222 over 5 years.
- June 2010 Province (B.C.) awarded funds for ARIEL building.
- Jan 2011 MoUs with CFI partner Universities complete

2010 June 22nd: Red letter day

Key Milestones:

- Injector Cryomodule test with beam: 2012 Nov
- Accelerator Cryomodule equipment test: 2014 June
- ACM test with 100kW electron beam: Jan 2015

E-Linac: Accelerator Overview

Power levels as in 2017

Main linac:

Two cryomodules

Two cavities/module,

Q≥10¹⁰ @10 MV/m.

10 mA, 40 MeV gain

≤ 400 kW beam power

300 keV Thermionic Injector: gun: triode operation Q≥10¹⁰ @10 MV/m, at 650 MHz 10 mA, 5-10 MeV gain ≤ 100 kW beam power **Solenoids** NC Buncher cavity

Division into injector & main linacs allows:

9-cell, RF Cavities

Possible expansion for:
 Energy Recovery (ERL) or Energy Doubler (RLA)
 Add return arcs to make a ring.

PAC'11 NYC NY. THOCN3

RTRIUMF

Former Proton Hall being cleaned out and refurbished as electron linac vault

ПОМЕ ЗОО keV Thermionic Gun Specifications

Beam energy	300 keV
Average current	10 mA
Modulation freq	650 MHz
Bunch length (FW)	16 deg
Bunch charge	16 pC
Energy spread	1keV FW
Emittance (1 σ)	5µm normalized

e-gun on HV platform in N2/SF6 gas mix at 2 atm.

TUP017: Conceptual Design of the Elinac 300 keV Gun

Main components of e-linac Injector

RIUMF

1.3 GHz NC Buncher – matches beam to 9-cell cavity

On site November 2009
Daresbury EMMA design purchased from Niowave

Parameter	value
Frequency (GHz)	1.300
Shunt resistance	4.3 (MΩ)
Realistic (80%)	3.44 (MΩ)
Q ₀	23,000
R/Q	147
Tuning (MHz)	-4 to +1.5

RTRIUMF

Accelerator Cryomodule ISO View With Tank Side Removed

ACM 27Deg. Tank Warm/cold Transition Ends

 Cold mass (cavity string and 2phase helium pipe) supported from strong back

 Strong back held in place by support posts strung from the lid

RUMF Final strong-back coldmass design

TUP027: The SRF Program for e-Linac at TRIUMF

New Coupler Region Design

TRIUMF

Simplified block diagram for e-Linac He Cryogenic System

E-linac Cryogenic System Block Diagram

Cryomodule Schematic Diagram

HPRF staging: 5mA, 25 MeV Date: 2014

2× 50 kW Cornell/CPI coupler per cavity

Modified TTF style cavity
 HOM damping for 1st and 3rd dipole pass bands
 TUP026: Cavity Design for the TRIUMF e-linac

&ткіомғ HPRF staging: 10 mA, 50 MeV <u>Date: 2017</u>

HPRF System Schematic

PAC'11 NYC NY. THOCN3

Candidate klystron: 1.3 GHz 300 kW at KEK

Ground Breaking News, 2011 March 28

PAC'11 NYC NY. THOCN3