Time-Dependent Phase-Space Measurements of the Longitudinally Compressing Beam in NDCX-I

S.M. Lidia, G. Bazouin, P.A. Seidl

Accelerator and Fusion Research Division Lawrence Berkeley National Laboratory Berkeley, CA USA

The Heavy Ion Fusion Sciences Virtual National Laboratory

NDCX-II 1.2MeV Li⁺ 50nC 0.5ns 0.7mm spot

Online 2012

NDCX-I 300kV K⁺ **15nC** ~2ns 2mm spot

NDCX-II 1.2MeV Li⁺ 50nC 0.5ns 0.7mm spot

Online 2012

NDCX-I 300kV K⁺ 15nC ~2ns 2mm spot

NDCX-II 1.2MeV Li⁺ 50nC 0.5ns 0.7mm spot

Online 2012

NDCX-I 300kV K⁺ 15nC ~2ns 2mm spot

NDCX-II 1.2MeV Li⁺ 50nC 0.5ns 0.7mm spot

Online 2012

NDCX-I 300kV K⁺ 15nC ~2ns 2mm spot

NDCX-I Experiment – Longitudinal compression

Peak current ~2.8A Uncompressed current ~30mA

Compression Ratio >90

6

Aberrations at the target plane reduce beam fluence

Beam fluences (mJ/cm²) averaged over 3.5ns gate window

Chromatic aberrations: 'Circle of least confusion' $r_c \sim 5mm$

Peak fluence ratio ~20X while the peak current ratio ~90X

The Heavy Ion Fusion Sciences Virtual National Laboratory

Measuring the modulated beam phase space

Measuring the modulated beam phase space

Controlling backstreaming electron flows

Controlling backstreaming electron flows

Electrons from the plasma and secondary emission can counterpropagate in the beam potential, disrupting beam transport tunes.

Controlling backstreaming electron flows

Electrons from the plasma and secondary emission can counterpropagate in the beam potential, disrupting beam transport tunes. **Biased-ring electron traps 'Box 1' 'Box 2'** Permanent-magnet dipole pair

(+-, 900 G peak field, Zero on -axis field integral)

16

Unmodulated beam profiles exhibit considerable structure

Quantitative agreement between theory and experiment in RMS spot size.

Measured phase space evolution

16 μ sec animation. Modulated portion ~1.5 μ sec

Modulated

n.b.: A slight difference in horizontal and vertical scales exists.

The Heavy Ion Fusion Sciences Virtual National Laboratory

Measured phase space evolution

16 μ sec animation. Modulated portion ~1.5 μ sec

Modulated

n.b.: A slight difference in horizontal and vertical scales exists.

The Heavy Ion Fusion Sciences Virtual National Laboratory

25

Box 2 phase space measurements reveal bifurcated phase space

Horizontal

Unmodulated Beam

Vertical

Box 2 phase space measurements reveal bifurcated phase space

Two populations present from beam head and along entire pulse.

Horizontal Unmodulated Beam Vertical

Bifurcation also appears in slit-scintillator phase space measurements. Complicates analysis of beam-gap dynamics and transport.

The Heavy Ion Fusion Sciences Virtual National Laboratory

Time Resolved Variations in Beam Parameters

Time Resolved Variations in Beam Parameters

Modulated beam comparison with axisymmetric WARP model

Summary

Improving target beam fluence in heavy ion beam neutralized drift compression geometries may require compensation of time-varying focusing elements.

We have made a series of time-resolved measurements of the beam parameters and phase space density of an intense, velocity-modulated ion beam transported through a plasma-neutralized channel.

Measurements indicate significant deviations from linear behavior in axisymmetric transport channels.

Possible mechanisms for variation from linear behavior may include:

- 3D density perturbations in the space charge dominated beam,
- Coupling to weak magnetic dipole chicanes,
- Nonlinear beam-plasma interaction,
- Electron trap biasing resulting in backstreaming electron flows.

Upcoming studies will examine these mechanisms.

