Non-neutral Plasma Traps for Accelerator-free Experiments on Space-charge-dominated Beam Dynamics

Hiromi Okamoto (Hiroshima Univ.)

and the members of the HU Beam Physics Group

Motivations

Recent worldwide interest in intense or low-emittance beams (Neutron sources and other high-power machines; Progress in various beam cooling techniques)

Necessity of understanding "space-charge effects"

(Important to clarify the fundamental mechanisms and parameter-dependence of SCEs.)

BUT

Many limitations both experimentally and theoretically ...

- > Parameters (tune, beam density, lattice, etc.) are not so flexible in real machines.
- High precision measurements are always troublesome (because any beams are travelling at relativistic speed in the lab frame).
- Too much beam losses are not acceptable in practice (to avoid machine damages).
- The basic equations are too complex to allow rigorous analytic calculations.
- Trustable 3D numerical simulations are very time-consuming.

Alternative methods and/or tools should be developed for detailed SCE studies.

Principle

Charged-particle beams
in an AG focusing channel
$$H_{beam} = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}K_Q(x^2 - y^2) + \frac{q}{m\gamma^3(\beta c)^2}\phi$$
Non-neutral plasmas
in a trap system
$$H_{plasma} = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}K_{RF}(x^2 - y^2) + \frac{q}{mc^2}\phi$$

Both interacting many-body systems obey the following equations:

Poisson equation
$$\Delta \phi = -\frac{q}{\varepsilon_0} \int f(\mathbf{r}, \mathbf{p}; t) d^3 \mathbf{p}$$
 Vlasov equation
$$\frac{\partial f}{\partial t} + [f, H] = 0$$
 Two systems are physically equivalent if governed by similar Hamiltonians.

Use this simple fact to study various collective effects in space-charge-dominated beams !

First proposal : H. Okamoto and H. Tanaka, NIM A **437** (1999) p. 178.

Typical Non-neutral Plasma Traps

Linear Paul Trap

Transverse confinement : rf quadrupole Longitudinal confinement : rf or electrostatic potential

Multi-Ring-Electrode Trap

Why traps ?

Very compact

Low cost

We have several traps of different designs, each of which costs a few k\$.

Extremely wide parameter range

Easy control of tunes and tune depression (and even lattice structures)

High resolution & precision measurements

MCPs, Faraday cups, and laser-induced fluorescence (LIF) diagnostics

No radio-activation

No machine damage from any large particle losses

Trap Systems at Hiroshima

S-PODs (Simulator for Particle Orbit Dynamics)

Paul trap I

Paul trap II

- Nano-ion-beam production
- Coulomb crystal stability, etc.

- Coherent resonances
- Lattice-dependent effects

Trap Systems at Hiroshima (cont.)

S-PODs (Simulator for Particle Orbit Dynamics)

Paul trap III (under test) MRE trap

Resonance crossing, etc.

Halo formation, etc.

Trap System at Princeton

Ref.: R. C. Davidson, H. Qin, G Shvets, Phys. Plasmas 7, 1020 (2000). E. P. Gilson et al., Phys. Rev. Lett. 92, 155002 (2004).

Particle Accelerator Conference March 2011

Multi-sectioned Linear Paul Trap

Paul Trap for S-POD I

S-POD No.1 is currently employed for experimental studies of nano-ion-beam source and Coulomb crystal stability.

J. Phys. Soc. Jpn. 79, 124502 (2010)

Aspect Ratio Control

Aspect Ratio Control

All experimental procedures are automated.

INPUT PARAMETERS (initial tune, final tune, plasma storage time, number of measurement points, ionization time, end plate voltages, etc.)

All experimental procedures are automated.

INPUT PARAMETERS (initial tune, final tune, plasma storage time, number of measurement points, ionization time, end plate voltages, etc.)

All experimental procedures are automated.

Delay Time (s)		· 문화 · · · · · · · · · · · · · · · · · ·	oplication Font	੶ਜ਼੶≝੶₡)		3
Loop number 16 Ch1 Low time (s) 1	lation(m ch2 low - 100	LinearReson AFG3022 % USB0-0.0009 AFG3000 Signal CHT: Vrt signal HME CHT: Vrt signal HME CHT: Vrt signal HME CHT: Vrt signal HME TDS20148 CUSB0-0.00099 Tch TDS20148 CHT: Vrt Signal HME Wave_det314A % COM3 V	Ance_ver3_20 Vrf Frequency(kHz) 936 Stat Vrf(Vpp) 0.4 Stop Vrf(Vpp) 0.7 step Vrf(Vpp) 0.003 Ionization(s) 1 Accumulation(s)	101214 perturbation Frequency (kHz) 249 Ampitude Vex Vir2const 0005 perturbation offset (V) 4 4 perturbation offset (v) 4 1 ms)	Vrf_IS(Vpp) 1072 Vrf_IS(Vmean) -00593637 Vrf_IS(Vrms) 372706 Vrf_IS(Hz) 993049 Vex Ampl.(V) 0.536	Run total count 134 REC count 101 AFG Vr(fyp) 0.7	
initial delay (ms) initia 0.002 1 nitial delay 0.002		LeCroy Wave Jet314A CH1: Triger CH2: Ion Signal error in (no error) status code code code	Gate open(ms) 100 save Vpp data Path C+Documents and Waveform Data 0.1-	Settings¥trap¥デスク	∿yĴ¥exp Plot 0		
		error out status code 1073676294 source MISA Read in lowavejet U Fotch Waveform 2 vi-	0- -01- 9-02- -03- -03- -05- -05- -07- 0	0.002	0.004	0.006	

INPUT PARAMETERS

(initial tune, final tune, plasma storage time, number of measurement points, ionization time, end plate voltages, etc.)

All experimental procedures are automated.

Edit Operate Tools Browse Window	Help 🔯	LinearResonance_ver3.vi	Front Panel		
Delay Time (s) STOP	nt 🔽 🎦 Fi	e Edit Operate Tools Browse	Window Help sation Font v Ppv Ppv ∰v	<u></u>	2
Loop number 16 Lonization(s) Accurn 01 ch1	ulation(m	LinearResonan	ICCE_VET3_20101214 TFrequency(ktz) Stat Vrf(Vpp) Stat Vrf(Vpp)	Vrf_JS(Vpp) 1072 134 Vrf_St(Vpp) 1072 134 Vrf_St(Vpp) 101 101 101 101 101 101 101 101 101 10	
low time (s) 1 initial delay (ms) 0.002	low 100 initia 1	Moniter Wave-Jet314A COM3 CCM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3	Ionization(s) time length(msc 1	e) 990(49 Vex AmpL(V) 0536	
initial delay		error out	0		
		source VISA Read in Icwavejet U Fotch Waveform 2.vi- Tektoro time 2382 2373	-06- -07- 0 0.0002 tt time one cycle[ms] [5169 P	C control	panel

INPUT PARAMETERS

(initial tune, final tune, plasma storage time, number of measurement points, ionization time, end plate voltages, etc.)

All experimental procedures are automated.

Delay Time (s)		Ele Edit Operate Tools Browse Window Help (C) (S) (In 12pt Application Font) (In 12pt Application Font)					2
Loop number		LinearReson	ance_ver3_20101 Vrf Frequency(kHz) Pertu (-) 996 / Partu	214 Instation Luency (kHz)	Vrf_IS(Vpp)	Run total count 134	
Ionization(s) Accum 31 31	ulation(m	AFG3000 Signal CH1: Vrf signal 1MHz CH2: Vperturbation TDS2014B	Stat Vrf(Vpp) Amp 2 0.4 Vex Stop Vrf(Vpp) 0.0 2 0.7 pertu	litude Vrf:const D05 Irbation	Vrf_IS(Vmean) -0.0593837 Vrf_IS(Vrms) 27.2206	REC count 101 AFG Vrf(Vpp) 0.7	
ch1 low time (s)	ch2 low 100	Tek TDS20148 CH1: Vrf_IS moniter Wave Jet314A	step Vrf(Vpp) 4 0.003 perturn Ionization(s) time 1 4 Accumulation(ms)	irbation length(msec)	Vrf_IS(Hz) 993049 Vex Ampl.(V)		
initial delay (ms) 0.002	initia 1	LeCroy Wave Jet 314A CH1: Triger CH2: Ion Signal error in (no error)	Gate open(ms) () 100 save Vpp data Path				
initial delay 0.002		status code	Waveform Data	gs¥trap¥⊤ X9ト	y7¥exp Plot 0		
		error out status code 1073676294	-01- p-02- iiii -03- -04- -05- -06-				
		VISA Read in Icwavejet U Fetch Waveform 2.vi-	-0.7 - 0 0.	^{do2} Time			panol

INPUT PARAMETERS

(initial tune, final tune, plasma storage time, number of measurement points, ionization time, end plate voltages, etc.)

Ultralow Emittance Limit (Coulomb Crystals)

S-POD I

Ultralow Emittance Limit (Coulomb Crystals)

S-POD I

Coherent Resonance Experiment

- Add specific DC bias voltages to Cap A and Gate.
- Ionize neutral Ar gas in the IS region (typically for 1 second).
- After a short storage (typically for 1 msec to 10 msec), switch off the bias on Gate (or Cap A).
- Measure the ion number with the Faraday cup (or MCP).
- Transfer the data to a personal computer and save it.
- Change slightly the amplitude of the rf voltage on the quadrupole electrodes.

Driving Force Example

Driving Force Example

Particle Accelerator Conference March 2011

Nucl. Instrum. Meth.A 482, 51 (2002)

Particle Accelerator Conference March 2011

Resonance Crossing

What happens if the operating point of an accelerator crosses a resonance stop band(s) ??

Resonance crossing can actually take place in non-scaling FFAGs, advanced cooler storage rings, etc.

Easily adjustable parameters :

- * lattice periodicity,
- * crossing speed & direction,
- * tune variation range,
- * degree of lattice symmetry breakdown and/or error strength,
- * beam intensity,
- * with or without cooling, ...

Move the S-POD operating point over a certain range at a certain speed.

Crystalline Beam Stability

Axial magnetic field : 62.5 Gauss Axial potential depth : (40 – 60) V Cyclotron ang. freq. : 1.1 GHz Brillouin density limit : 1.9 x 10⁸ cm⁻³

$$H = \frac{\mathbf{p}^2}{2} + \frac{1}{2}(k_{\perp}^2 - k_{\rm P}^2)r^2 + k_{\rm P}^2z^2 + \frac{e}{mc^2}\phi_{sc}$$

The ratio k_{\perp} / k_{P} is less than 0.1 under the present experimental conditions.

Total number of electrons ~ 10^8 resulting in the *local* tune depression ~ 0.5 (max.)

Axial magnetic field : 62.5 Gauss Axial potential depth : (40 – 60) V Cyclotron ang. freq. : 1.1 GHz Brillouin density limit : 1.9 x 10⁸ cm⁻³

$$H = \frac{\mathbf{p}^2}{2} + \frac{1}{2}(k_{\perp}^2 - k_{\rm P}^2)r^2 + k_{\rm P}^2z^2 + \frac{e}{mc^2}\phi_{sc}$$

The ratio k_{\perp} / k_{P} is less than 0.1 under the present experimental conditions.

Total number of electrons ~ 10^8 resulting in the *local* tune depression ~ 0.5 (max.)

Axial magnetic field : 62.5 Gauss Axial potential depth : (40 – 60) V Cyclotron ang. freq. : 1.1 GHz Brillouin density limit : 1.9 x 10⁸ cm⁻³

$$H = \frac{\mathbf{p}^2}{2} + \frac{1}{2}(k_{\perp}^2 - k_{\rm P}^2)r^2 + k_{\rm P}^2z^2 + \frac{e}{mc^2}\phi_{sc}$$

The ratio k_{\perp} / k_{P} is less than 0.1 under the present experimental conditions.

Total number of electrons ~ 10^8 resulting in the *local* tune depression ~ 0.5 (max.)

Axial magnetic field : 62.5 Gauss Axial potential depth : (40 – 60) V Cyclotron ang. freq. : 1.1 GHz Brillouin density limit : 1.9 x 10⁸ cm⁻³

$$H = \frac{\mathbf{p}^2}{2} + \frac{1}{2}(k_{\perp}^2 - k_{\rm P}^2)r^2 + k_{\rm P}^2z^2 + \frac{e}{mc^2}\phi_{sc}$$

The ratio k_{\perp} / k_{P} is less than 0.1 under the present experimental conditions.

Total number of electrons ~ 10^8 resulting in the *local* tune depression ~ 0.5 (max.)

Axial magnetic field : 62.5 Gauss Axial potential depth : (40 – 60) V Cyclotron ang. freq. : 1.1 GHz Brillouin density limit : 1.9 x 10⁸ cm⁻³

$$H = \frac{\mathbf{p}^2}{2} + \frac{1}{2}(k_{\perp}^2 - k_{\rm P}^2)r^2 + k_{\rm P}^2z^2 + \frac{e}{mc^2}\phi_{sc}$$

The ratio k_{\perp} / k_{P} is less than 0.1 under the present experimental conditions.

Total number of electrons ~ 10^8 resulting in the *local* tune depression ~ 0.5 (max.)

Axial magnetic field : 62.5 Gauss Axial potential depth : (40 – 60) V Cyclotron ang. freq. : 1.1 GHz Brillouin density limit : 1.9 x 10⁸ cm⁻³

$$H = \frac{\mathbf{p}^2}{2} + \frac{1}{2}(k_{\perp}^2 - k_{\rm P}^2)r^2 + k_{\rm P}^2z^2 + \frac{e}{mc^2}\phi_{sc}$$

The ratio k_{\perp} / k_{P} is less than 0.1 under the present experimental conditions.

Total number of electrons ~ 10^8 resulting in the *local* tune depression ~ 0.5 (max.)

Concluding Remarks

S-POD offers a new experimental means with which we can systematically explore the collective nature of particle beams over a wide range.

Ongoing experimental subjects include :

Resonance-induced instabilities (lattice-induced effects, stop-band crossing)

Mismatch-induced effects (halo formation)

Ultralow-emittance Coulomb systems (crystalline-beam stability, nanobeam production)

• Other subjects that will be studied in the near future include :

Short bunch experiments, Synchro-betatron coupling effects, Resonance-induced halo formation, Heating from Coulomb collisions, ... etc.

We need more experiences to perfectly establish this new approach.

Matters Under Consideration

Systematic numerical simulations

Fine tune-depression control by the laser system & LIF diagnostics development

Further increase of confinable particle numbers (plasma stacking)

Improvements of S-POD components (rf power generators, ionization system, etc.)

Past and Present Contributors to the S-POD Project

Hiroshima University

Hiroyuki Higaki, Kiyokazu Ito

(Students)

Shuhei Fujimoto, Masaharu Fujioka, Kyohei Fukata, Haruki Hitomi, Keiichi Homma, Masao Kano, Yasuhiko Mizuno, Kenji Nakayama, Shunsuke Ohtsubo, Kota Okabe, Shunsuke Sakao, Hiroshi Sugimoto, Hiroki Takeuchi, Kazuhisa Tanaka, Ryota Takai, Genki Uchimura

Osaka University

Kenji Toyoda

LBNL & LLNL

Steven M. Lund, Andrew M. Sessler, Jean-Luc Vay, David Grote

Acknowlegements

Past and Present Contributors to the S-POD Project

Hiroshima University

Hiroyuki		
(Students	S-POD facilities are open to anybody who has interest in	
Shuhei Fu	using them for beam-physics purposes.	mma,
Masao Ka	Even the dy is welcomed if he (she wents to the environment)	abe,
Shunsuke	Everybody is welcome if ne/sne wants to try any new	akai,
Genki Uc	experiments with S-PODs in Hiroshima.	
Osaka U	Thank you for attention !	
Kenji Toy <mark>c</mark>	Thank you for attention :	
LBNL &	LLINL	

Steven M. Lund, Andrew M. Sessler, Jean-Luc Vay, David Grote