PAC'11, Mar. 28-Apl. 1, 2011, New York

FEMTOSECOND RF GUN BASED MEV ELECTRON DIFFRACTION

Jinfeng Yang

The institute of scientific and industrial research (ISIR) Osaka University, Japan

Ultrafast electron diffraction(UED)

----- a pump-probe technique -----

Short-pulse photon beam: pump source, short-bunch electron beam: probe source

were reported in Science, PRL, APL, Nano Letters,

keV-e⁻ based UEDs

view of melting in Al on picosecond time scale

Why MeV UED?

Problem using DC gun: electron pulse broadening due to space-charge effect!

B. J. Siwick et al., JAP 92, 1643 (2002)

2 decrease electron charge

It is impossible for single-shot meas.!

It is difficult to generate 100 fs electron bunch or less due to space-charge effect in DC gun.

A good choice to use photocathode rf gun generating 100 fs MeV electron beam for UED!

First UED demonstration using RF gun

First MeV UED experiment at SLAC in 2006: Hastings, et al. APL 89, 2006

MeV e- diffraction from 160-nm Al

Beam energy: 5.4MeV Bunch charge: 2.9pC

Emittance: 0.85mm-mrad Energy spread: 0.65%

recent progress on MeV UED

1 MeV UED at UCLA in 2008

Beamline aperture 440 200 220 malized 240 (220) peaks ş 040 060 020 alized intensity 25 ps 0.8 Liauid 0.4 è

MeV e⁻ diffraction and time-resolved meas. from a single crystal 20-nm thick gold sample

100 nm polycrystalline Al

single crystal gold

Both experiments show that the RF gun is useful for MeV electron diffraction!

MeV electron diffraction in Osaka Univ.

Difference with other UED facilities (i.e. UCLA, Tsinghua Univ.):

use of Cond. Lens, Object. Lens and Proj. Lens, therefore, compact & more efficient!

Femtosecond electron RF gun

developed under the collaboration with KEK

Some improvements:

- •a new structure cavity
- remove two laser injection ports
- •a new turner system
- •a new insertion function of photocathode
- (The photocathode is removable)

Femtosecond electron RF gun

Femtosecond electron RF gun

Detection of MeV electron diffraction

Requirements of detector: high resolution, high efficiency, no damage

Problems

- Very low current, i.e. ~pA
- Small scattering angle, i.e. 0.1mrad
- Strong X-ray emissions,
 - i.e. Backgnd, pixel defect
- Damage by MeV electron,
 - i.e. scintillator, fiber
- Diff. Pattern to be magnified/shifted

Solution

- Csl: Small Illumination volume size-matched to CCD pixel
- Indirect exposure
 <u>Thin mirror +</u> Lens coupling
- No pixel defect observed yet
- Large detection area, i.e. 5x5cm²

Quality of MeV electron diffraction

The RF gun is useful to observe a high-quality MeV electron diffraction!

Time-resolved measurement

Power of the technique: static diffractions

Single-shot measurement

1 shot (0.1s)

Electron beam: 3 MeV, 0.3 pC Sample: single crystal Si

The single-shot measurement is available.

The excellent statistics are observed in 2 second!

Large scattering vector q_{max} Insulator (Mica)
 Single crystal (~100s nm)
 K(Fe,Mg)₃(AlSi₃O₁₀)(OH,F)₂
 top side SiO₄ SiO₄ Fe, Mg

No charging effect (Difficult at Low Voltage)

Conclusion

We have developed successfully a femtosecond MeV electron diffraction system based on photocathode RF gun at Osaka University.

Both the single-shot and time-resolved measurements were succeeded. The high-quality MeV electron diffractions were observed from the semiconductor, the insulator and the metal.

The experiments suggest that the photocathode rf gun is very useful for the ultrafast electron diffraction/microscopy.

A time-resolved MeV electron microscopy based on photocathode RF gun is being developed in Osaka University.

Acknowledgments

Co-workers at Osaka University: Nobuyasu Naruse Yoshie Murooka Katsumi Tanimura Koichi Kan Takafumi Kondoh Yoichi Yoshida Collaboration member in KEK: Junji Urakawa Toshikazu Takatomi

fs bunch length at exit of rf gun

Purpose: Study of phase transition dynamics

Formation of diamond(sp³-bonded carbon) nanostructures on graphite by femtosecond laser excitation

J. Kanasaki, et al. PRL 102, 087402(2009)

recent progress on MeV UED

4 MeV UED at Osaka Univ. in 2009

Beam energy: 3 MeV Bunch charge: 1 pC Emittance: 0.2~0.3mm-mrad Energy spread: 0.3%

