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Abstract

We present the numerical calculations based on the theo-
retical research of synchrotron radiation characteristics for
the weakly excited particles. For a spinless and spinor par-
ticle the exploration of effective angles and deviation an-
gles is to be conducted. Comparing the obtained data with
its classical analogue, one shows that the quantum theory
gives a number of unpredictable results.

INTRODUCTION

Once discovered experimentally, the synchrotron radia-
tion (SR) is a phenomenon with a special sort of relations
between its theory and corresponding experiments. What
we can call a tradition, is a theory always being step by
step followed by its experimental confirmation [1, 2]. Thus,
continuing the theoretical exploration of SR properties one
can discover new horizons for experimental work. We give
this short excuse to present a number of results concerning
SR obtained with the use of quantum theory.

To investigate the character of radiation the effective an-
gle concept [3, 4] is used. In terms of quantum theory we
consider the effective angle of a scalar particle (a boson)
and a spin one-half particle with the direction of spin op-
posite to the external magnetic field (electron). Only the
first excited state particles are under investigation mainly
because at low levels one can do calculations for all energy
values. Moreover, such choice is convenient to give a com-
parative analysis of the results obtained within classical and
quantum approach.

In the framework of classical SR theory one interprets
the phenomenon as a radiation of a particle moving around
circular orbit in the plane straight perpendicular to the ex-
ternal magnetic field of strengths H > 0. The quantum
picture differs completely, still we can consider the motion
in a similar magnetic field. In this case the energy of a first
excited state boson and electron respectively:

E = m0c
2γ, where γ2 = (1− β2)−1 =

=

{
1 + 2B for an electron
1 + 3B for a boson

, (1)

B =
H

H0
, H0 =

m2
0c

3

|e|� .
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Here m0 is the rest mass of the particle, c is the velocity
of light, γ is the relativistic factor, e - the algebraic charge
value of the particle, � - the Plank constant.

We use index s to describe the polarization components
as follows: if s = 2, 3 then it is σ- or π- component of lin-
ear polarized radiation respectively, s = 1 for right circular
polarization (because of the symmetry, there is no need to
separately describe left circular polarization component),
s = 0 indicates the summed over polarization components
or so-called total radiation. The direction of photon escape
is described by θ.

THE EFFECTIVE ANGLE OF RADIATION

The definition of an effective angle was given in [3]. An
effective angle is an opening angle into which the main part
of power is radiated. Mathematically we can define an ef-
fective angle with the use of the following equations:
{ ∫ θ2

θ1
Φs(β, θ) sin θdθ = 1

2

∫ π

0
Φs(β, θ) sin θdθ,

Φs(β, θ1) sin θ1 = Φs(β, θ2) sin θ2.
(2)

Here the functions Φs(β, θ) define the character of the an-
gular distribution for SR power. The effective angle is

Δs(β) = θ2(β)− θ1(β)

We consider θ2 instead of the formal deviation angle given
in [3,4]. Now, let us write the expressions for Φs(β, θ). In
terms of classical theory they could be represented

x = x(β, θ) = β sin θ,

Φ2(β, θ) = Φ2(x) =
4 + 3x2

(1− x2)5/2
,

Φ3(β, θ) = Φ3(x) =
(4 + x2) cos2 θ

(1− x2)7/2
,

Φ0(β, θ) = Φ2(β, θ) + Φ3(β, θ)

Φ1(β, θ) =

∞∑
n=1

n2

2
[J ′

n(nβ sin θ) +
cos θ

β sin θ
Jn(nβ sin θ)]2.

For the first radiated harmonic one can write

Φ2(β, θ) = J ′2
1 (x),

Φ3(β, θ) =
cos2 θ

x2
J2
1 (x),
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Φ0(β, θ) = Φ2(β, θ) + Φ3(β, θ),

Φ1(β, θ) =
1

2
[[J ′

1(x) +
cos θ

x
J1(x)]

2.

Here Jn, J ′
n - are the Bessel function and its derivative

respectively.
The quantum theory allows to obtain similar formula

separately for a boson

x0 = x0(β) =

√
3−

√
3− 2β2

√
3 +

√
3− 2β2

,

x = x(β, θ) =

√
3−

√
3− 2β2 sin2 θ

√
3 +

√
3− 2β2 sin2 θ

,

Φ2(β, θ) = Φ2(x) = (1 + x)3(1− x) e−x,

Φ3(β, θ) =
(1 + x)5

(1− x)
cos2 θ e−x,

Φ0(β, θ) = Φ2(β, θ) + Φ3(β, θ),

Φ1(β, θ) =
Φ0

2
+ (1 + x)4 cos θ e−x,

and an electron

x0 = x0(β) =
1−

√
1− β2

1 +
√
1− β2

,

x = x(β, θ) =
1−

√
1− β2 sin2 θ

1 +
√
1− β2 sin2 θ

,

f(x) =
(1 + x)3

(1− x)
e−x,

Φ2(β, θ) = Φ2(x) = (1− x0x)f(x),

Φ3(β, θ) =
(1 + x)2

(1− x0x)
cos2 θf(x),

Φ0(β, θ) =
2x0 − x(1 + x2

0)

x0
f(x),

Φ1(β, θ) =
2x0(1 + cos θ)− x(1− 2x0 cos θ + x2

0)

2x0
f(x).

THE ASPECTS OF CALCULATION

It is clear, that the calculations depend on the behavior
of integrands, i. e. of functions Φs(β, θ). If the func-
tion Φs(β, θ) sin θ at fixed β is symmetrical with respect
to θ = π

2 then we can reduce the interval and search for θ1
and θ2 on [0, π/2]. In this case we put Δs(β) = 2(θ2−θ1).
Obviously, if Φs(β, θ) sin θ is symmetrical with respect to
θ = π

2 and monotone increasing on [0, π/2] at any value of
β (thus has its maximum at θ = π

2 ) it becomes necessary to
consider only one equation for θ1 instead of the system (2).
That is the case when we deal with σ - component of bo-
son, electron and total classical radiation. But the behavior
of first harmonic is different: there is a value of β at which
the functions Φ2(β, θ) sin θ cease being monotone and we

need to solve the system of equations. The angular dis-
tribution of total radiation demonstrates exactly the same
character (the one associated with boson is an exception).
In ultrarelativistic limit (β → 1) we can use the approxi-
mations obtained in [3, 5]

Δs(β → 1) = as
√
1− β2,

a0 = 0.8414, a1 = 0.6765,

a2 = 0.7407, a3 = 1.1950.

THE BEHAVIOR OF CLASSICAL AND
QUANTUM EFFECTIVE ANGLES

Using the definition one can built the graphs which
demonstrate the behavior of functions Δs(β) for all types
of polarization components. Now it becomes easier to fol-
low the character of Δs(β) and to compare the results pro-
vided by classical and quantum theories. Giving a brief
regard to the figures below, one can be surprised with the
fact that the curve corresponding with an electron behaves
more similarly to the classical curve then the one related to
boson. Of course, this is an unexpected result.

a) b)

c) d)

Figure 1: The behavior of Δs(β): σ-polarization compo-
nent (a); π-polarization component (b); total radiation (c)
and right circular polarization component (d). Label ’1’ is
for first harmonic, ’2’ for classical curve, ’3’ for bosonic
curve, ’4’ for electronic curve.

Considering the ultrarelativistic limit, the quantum the-
ory says (in contrast to classical approach) that no radia-
tion concentration can be observed near the orbits plane.
At β → 1 bosonic and electronic curves tend to fixed num-
bers differing from zero. However, in non-relativistic case
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(β → 0) all the curves are very close, they start at the same
point at β = 0 for every s, as it was expected. The values
of Δs at β = 0 are as follows

Δ0 = 1.251540130, Δ1 = 0.6823511020,

Δ2 = π/3 = 1.047197551, Δ3 = 0.9123454428.

CONCLUSION

It is shown, that the radiation angular distribution of an
electron behaves more similarly to the classical theory pre-
dictions, then the one associated with boson. Touching bo-
son, one can observe its effective angles (Δ1, Δ0) having
the same character as the first harmonic does. Obviously,
these results are unexpected.

Considering the ultrarelativistic limit one can find the
difference between the values of SR characteristics calcu-
lated with the use of classical and quantum approaches.
Namely, according to quantum theory no radiation concen-
tration can be observed near the orbit’s plane.
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