
PARALLEL OPTIMIZATION OF BEAM-BEAM EFFECTS IN HIGH
ENERGY COLLIDERS∗

J. Qiang† and R. D. Ryne, LBNL, Berkely, CA 94720, USA

Abstract

Beam-beam effects limit luminosity in high energy col-
liders. Parallel beam-beam simulation codes were devel-
oped to study those beam-beam effects and to help col-
lider design. In this paper, we will present a parallel pa-
rameter optimization algorithm integrated together with a
parallel beam-beam simulation code to optimize the lumi-
nosity of two colliding beams. This algorithm is based on
a differential evolutionary global optimization method and
takes advantage of the two-level parallelization in both par-
allel search and parallel objective function evaluation. This
significantly increases the scalability of the simulation on
petascale supercomputers and reduces the computing time
for finding the optimal tune working point.

INTRODUCTION

Collective beam-beam effects play an important role in
high energy collider performance. In order to reach a
higher luminosity, the beam-beam effects need to be opti-
mized with respect to the collider machine parameters such
as tune working points. The brute force method based on
parameter scans in multi-dimensional tune space using a
self-consistent beam-beam simulation model is extremely
time consuming given the fact that a single working point
simulation might take more than 10 hours. In this paper,
we propose using a parallel differential evolution algorithm
together with a parallel beam-beam simulation model for
beam-beam studies and collider optimization.

COMPUTATIONAL BEAM-BEAM MODEL

The computer code used in this study is the Beam-
Beam3D code [1]. The BeamBeam3D is a parallel three-
dimensional particle-in-cell code to model beam-beam ef-
fect in high-energy ring colliders. This code includes a self-
consistent calculation of the electromagnetic forces (beam-
beam forces) from two colliding beams (i.e. strong-strong
modeling), a linear transfer map model for beam transport
between collision points, a stochastic map to treat radiation
damping, quantum excitation, an arbitrary orbit separation
model, and a single map to account for chromaticity ef-
fects. Here, the beam-beam forces can be from head-on
collisions, offset collisions, and crossing angle collisions.
These forces are calculated by solving the Poisson equation
using a shifted integrated Green function method, which
can be computed very efficiently using an FFT-based algo-

∗ Work supported by the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.
† jqiang@lbl.gov

rithm on a uniform grid. For the crossing angle collisions,
the particles are transformed from the laboratory frame into
a boosted Lorentz frame, where the beam-beam forces are
calculated the same as in the head-on case. After the col-
lision the particles are transformed back into the labora-
tory frame. The BeamBeam3D code can handle multiple
bunches from each beam collision at multiple interaction
points (IPs). The parallel implementation is done using a
particle-field decomposition method to achieve a good load
balance. Recently, three beam-beam compensation models
– conducting wire, electron lens, and crab-cavity – were
added to the code.

PARALLEL DIFFERENTIAL EVOLUTION
ALGORITHM

The differential evolution algorithm is a relatively new
method in evolutionary algorithms [2]. It is a simple but
powerful population-based, direct-search algorithm with
self-adaptive step size to generate next-generationoffspring
for global optimization. It has been successfully used in
a variety of applications and demonstrated its effective-
ness [3, 4, 5]. In this algorithm, a group of population with
size NP in control parameter space is randomly generated
at the beginning. This population is taken as the first gener-
ation of the control parameters. A new generation of con-
trol parameter population is generated as follows: For each
parameter vector xi,G, i = 0, 1, 2, · · · ,NP−1 in a population
size NP at generation G, a perturbed vector vi is generated
according to

vi = xi,G + FCR (xb,G − xi,G) + Fxc (xr1,G − xr2,G) (1)

where the integers r1 and r2 are chosen randomly from
the interval [1,NP] and are different from the running in-
dex i, Fxc is a real scaling factor that controls the amplifi-
cation of the differential variation (xr1,G − xr2,G), xb,G is the
best parameter solution in generation G, and where F CR is
a combination weight factor between the original individ-
ual parent and the best parent. In most typical simulations,
Fxc is set to 0.8, and FCR is chosen from a uniform random
number between 0 and 1. In order to increase the diversity
of the parameter vectors, crossover between the parameter
vector xi,G and the perturbed vector vi is introduced with an
externally supplied crossover probability Cr to generate a
new trial vector Ui,G+1, i = 0, 1, 2, · · · ,NP − 1. For a D di-
mensional control parameter space, the new trial parameter
vector Ui,G+1, i = 0, 1, 2, · · · ,NP − 1 is generated using the
following rule:

Ui,G+1 = (ui1,G+1, ui2,G+1, · · · , uiD,G+1) (2)

WEP152 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

1770C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques



ui j,G+1 =

{
vi j, i f rand j ≤ CR or j = mbri

xi j, otherwise
(3)

where rand j is a randomly chosen real number in the in-
terval [0, 1], and the index mbri is a randomly chosen in-
teger in the range [1,D] to ensure that the new trial vec-
tor contains at least one parameter from the perturbed vec-
tor. In most simulations, the Cr is chosen as 0.5. Next,
the new trial solution Ui,G+1 is checked against the original
parent xi,G. If the new trial solution produces a better ob-
jective function value, it will be put into the next generation
(G + 1) population. Otherwise, the original parent is kept
in the next generation population. The above procedure is
repeated for all NP parents to generate a new generation of
population. This completes one iteration. Many iterations
or generations are used to attain the final global optimal
solution.

The above population based differential evolutionary op-
timization algorithm naturally leads to a multi-processor
parallel implementation. Our method contains two levels
of parallelization. First, the whole population is distributed
among a number of groups of parallel processors. Each
group of processors contains a subset of the whole popu-
lation. Different sets of the sub-population can be tracked
simultaneously. Second, each objective function evalua-
tion corresponds to an accelerator simulation, for which
parallel codes are available. Here, the objective function
is the peak luminosity computed using the parallel Beam-
Beam3D code run on the number of processors inside a
group. Such a two-level parallelization scheme has good
parallel scalability and allows a large number of processors
(beyond many tens of thousands) to be used during the pro-
cess of the optimization. This will significantly reduce the
computational time-to-solution required to find an optimal
working point in high energy colliders. Table 1 shows a
weak scaling test of the parallel optimization code using
the BeamBeam3D code on a Cray XT-5 supercomputer at
the Oak Ridge National Laboratory. It is seen that the sim-
ulation scales very well even up to 100, 000 processors.

Table 1: Weak Scaling Test on Cray XT-5

processors time (sec) problem size efficiency

6400 2522 100 1
12800 2611 200 0.97
25600 2700 400 0.93
51200 2890 800 0.87
102400 2710 1600 0.93

OPTIMIZATION OF LUMINOSITIES AT
THE LHC AND THE ELIC

In the following, we applied the above parallel differen-
tial evolution algorithm together with the parallel beam-
beam simulation to optimizing luminosities at the Large
Hadron Collider (LHC) and the proposed Electron Light

Ion Collider (ELIC). The major parameters used in the
beam-beam simulation for the LHC are summarized in Ta-
ble 2 [6]. Fig. 1 shows the peak luminosity from single

Table 2: Major Parameters for LHC

Quantity LHC p

energy (GeV) 7000
particles per bunch (1011) 1.15
horizontal β∗ (m) 0.5
vertical β∗ (m) 0.5
horiztonal emittance (unnorm.) (um) 0.000512
vertical emittance (unnorm.) (um) 0.000512
rms bunch length (m) 0.077
rms relative energy spread (10−3) 0.111
damping time 109

synchrotron tune 0.00212
nominal horizontal tune 0.31
nominal vertical tune 0.32

bunch collisions as a function of the population generation
for the LHC optimization. Here, we have used a population

 4e+30

 4.5e+30

 5e+30

 5.5e+30

 6e+30

 6.5e+30

 7e+30

 7.5e+30

 8e+30

 8.5e+30

 9e+30

 9.5e+30

 0  100  200  300  400  500  600  700

pe
ak

 lu
m

. p
er

 c
ol

lio
n 

(/
m

^2
/s

)

generation

Figure 1: Peak luminosity as a function of generation for
the LHC optimization.

size of 100 in each generation. It is seen that after 600 gen-
erations, the luminosity has been improved by about 100%.
The above simulation took 3 hours on 12800 Cray XT4
processors at the National Energy Scientific Computing
Center (NERSC). The same simulation would have taken
more than one year if a single processor workstation were
used. Fig. 2 shows the peak luminosity evolution with the
nominal tune working point (0.31, 0.32) and the optimized
tune working point (0.4752, 0.4998), (0.4983, 0.4997). The
optimized working point produces significantly larger lu-
minosity in comparison with the nominal tune working
point. This is due to the large dynamic beta effects with
the new working point. However, this working point might
not be practically usable due to the presence of quadrupole
errors that could drive a half integer resonance.

We also applied the parallel beam-beam optimization to
ELIC luminosity optimization. The major parameters used
in the beam-beam simulation for ELIC are summarized in
Table 3 [7]. Fig. 3 shows the peak luminosity from single

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA WEP152

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques 1771 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



 0

 5e+30

 1e+31

 1.5e+31

 2e+31

 2.5e+31

 3e+31

 0  1000  2000  3000  4000  5000  6000  7000  8000

lu
m

in
os

ity
 p

er
 c

ol
lis

io
n

turn

nominal working point
optimized working point

Figure 2: Peak luminosity evolution with the nominal tune
working point and the optimized tune working point at
LHC.

Table 3: Major parameters for ELIC

Quantity e− p

energy (GeV) 5 60
particles per bunch (1010) 1.25 0.416
horiztonal β∗ (m) 0.1 0.1
vertical β∗ (m) 0.02 0.02
horiztonal emittance (unnorm.) (um) 0.00548 0.00548
vertical emittance (unnorm.) (um) 0.0011 0.0011
rms bunch length (m) 0.0075 0.01
rms relative energy spread (10−3) 0.71 0.71
damping time 1516 109

synchrotron tune 0.045 0.045
nominal horizontal tune 0.1 0.083
nominal vertical tune 0.1618 0.1343

bunch collisions as a function of the evolution generation
for the ELIC optimization. The peak luminosity has been

 4e+28

 4.1e+28

 4.2e+28

 4.3e+28

 4.4e+28

 4.5e+28

 4.6e+28

 4.7e+28

 4.8e+28

 0  10  20  30  40  50  60  70  80

pe
ak

 lu
m

in
os

ity
 p

er
 c

ol
lis

io
n

generation

Figure 3: Peak luminosity as a function of generation for
ELIC optimization.

improved by about 20% after 80 generations. Fig. 4 shows
the peak luminosity evolution with the nominal tune work-
ing point (0.1, 0.1618), (0.083, 0.1343) and the optimized
tune working point (0.02498, 0.08563), (0.5011, 0.5862).
The optimized working point produces about 30% larger
luminosity in comparison with the nominal tune working
point.

 3e+28

 3.5e+28

 4e+28

 4.5e+28

 5e+28

 5.5e+28

 6e+28

 0  500  1000  1500  2000  2500  3000

lu
m

in
os

ity
 p

er
 c

ol
lis

io
n

turn

nominal working point
optimized working point

Figure 4: Peak luminosities evolution with the nominal
tune working point and the optimized tune working point
at ELIC.

ACKNOWLEDGEMENTS

This research used computer resources at the National
Energy Research Scientific Computing Center and at the
National Center for Computational Sciences.

REFERENCES

[1] J. Qiang, M. A. Furman, R. D. Ryne, J. Comp. Phys., vol.
198, p. 278 (2004).

[2] R. Storn and K. Price, Journal of Global Optimization
1a1:341-359, (1997).

[3] F. Xue, A. C. Sanderson and R. J. Graves. in Proceed-
ings of the 2003 Congress on Evolutionary Computation
(CEC’2003), Volume 2, pp. 862–869, IEEE Press, Canberra,
Australia, December 2003.

[4] B. V. Babu, P. G. Chakole, J. H. Syed Mubeen, Chemical
Engineering Science, vol. 60, p. 4822 (2005).

[5] X. Wang, M. Hao, Y. Cheng, R. Lei, Journal of Universal
Computer Science, vol. 15, no. 4 (2009), 722-741.

[6] Y. Papaphilippou, F. Zimmermann, PRST-AB 2, 104001
(1991).

[7] B. Terzic, Y. Zhang, in Proceedings of IPAC’10, p. 1910, Ky-
oto, Japan, 2010.

WEP152 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

1772C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques


