
HPC CLOUD APPLIED TO LATTICE OPTIMIZATION∗

Changchun Sun† , Hiroshi Nishimura, Susan James, Kai Song, Krishna Muriki, Yong Qin
Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA

Abstract

As Cloud services gain in popularity for enterprise use,
vendors are now turning their focus towards providing
cloud services suitable for scientific computing. Recently,
Amazon Elastic Compute Cloud (EC2) introduced the new
Cluster Compute Instances (CCI), a new instance type
specifically designed for High Performance Computing
(HPC) applications. At Berkeley Lab, the physicists at the
Advanced Light Source (ALS) have been running Lattice
Optimization on a local cluster, but the queue wait time and
the flexibility to request compute resources when needed
are not ideal for rapid development work. To explore alter-
natives, for the first time we investigate running the Lattice
Optimization application on Amazon’s new CCI to demon-
strate the feasibility and trade-offs of using public cloud
services for science.

INTRODUCTION

Lattice Optimization

Lattice Optimization is a challenging aspect of storage
ring design. It is a multi-objective and multi-variable op-
timization problem, i.e., simultaneously evaluating multi-
ple objectives, such as the emittance, optics function, dy-
namics aperture and beam life time. The variables used
for the optimization are usually the magnetic settings, e.g.,
quadrupole and sextupole strengths. Two methods, brute
force scan and Genetic Algorithms, have been successfully
developed and applied by storage ring designers to opti-
mize lattice [1]. Both of these methods heavily rely on
the computing capability. Fortunately, High Performance
Computing (HPC) allows us to find optimum lattice so-
lutions in a reasonable time. At Advanced Light Source
(ALS) [2], we recently developed a genetic optimization
code, GeneticTracy, on top of Tracy++ [3] to search for
alternating high and low beta lattice for the ALS future
upgrades [4]. To search for the optimal solutions of the
lattice, a large number of population and generation sizes
are required. GeneticTracy implements Message Passing
Interface (MPI) with master-slave model to achieve paral-
lelization.

Cloud Offerings

Public Cloud offerings have increased in scope and avail-
ability over the past couple of years; however, it has not
been widely adopted by the scientific computing commu-
nity despite growing interest. Jackson, Ramakrishnan, et

∗Work supported by U.S. DoE Contract No. DE-AC02-05CH11231
† CCSun@lbl.gov

al. [5, 6, 7], have done some previous research on defin-
ing the requirements to adopt Cloud for average HPC us-
age model, as well as some performance evaluation on the
Amazon Elastic Compute Cloud (EC2) platform [8]. Their
work was developed on the standard instances, which is not
the latest Cluster Compute Instances(CCI) that our study is
based on. This instance type was introduced by Amazon to
be their public cloud offering for High Performance Com-
puting. CCI is different from the original Amazon EC2
instances mainly because it has a predefined architecture
and hardware specification and the hardware is not shared
with other Amazon EC2 instances. Thus we can launch
multiple instances to form a cluster that is similar to a typ-
ical small to mid-range HPC cluster. Amazons Placement
Group, a logical entity, facilitates the launching of multiple
CCI instances into a cluster of instances with a low latency
and high bandwidth interconnect. Amazon also provides a
re-sizable compute capacity with this instance type so that
one can add and remove instances to the cluster as needed.
This flexibility is one of the advantages of Amazon EC2.

CLUSTER CONFIGURATIONS

Building a HPC cluster in Amazon EC2

In this study, we launched CCI instances using the Ama-
zon EC2 command line API or Amazon Web Services
(AWS) Management Console. One can store data on the
root device, which is the local instance store of these com-
pute instances which will be accessible only from that in-
stance or on Amazons Elastic Block Storage (EBS) vol-
ume, such that data can be persistent while independent on
the lifetime of the instances. EBS volumes can be created
and attached to instances by using EC2 API or AWS con-
sole. There is no limit to how many CCI instances that can
be launched. To be able to run a traditional HPC appli-
cation such as the Lattice Optimization code, we needed
to create an environment similar to traditional HPC clus-
ter platforms using these independently instantiated com-
pute instances and EBS storage volumes. We also needed
to create a master compute instance which acts as a lo-
gin node or head node to our virtual HPC cluster, and all
the remaining instances act as compute or worker nodes
on which jobs are executed. We attached an EBS volume
which contains all the application software stack, source
code, and input/output data files only to the head node and
then mounted that volume over NFS on the compute in-
stances such that they are accessible to all the instances.
Using the private interface addresses of all the compute
nodes we can build a machine file with which MPI parallel
jobs can be easily launched on the virtual cluster. Jack-

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA WEP151

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques 1767 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

son, Ramakrishnan, et al. [5, 6, 7] have developed a set of
scripts using Python to deploy virtual clusters on Amazon
EC2. In order to automate the model described above, we
developed our scripts based on this work.

We launched the CCI instances from scratch every time
we needed them, and terminated them after we finished our
runs in order to avoid paying for the instances while they
are not in use. Amazon provides a start/stop feature for
their instances, but we opted not to use them. Although this
feature might look attractive, the private interface address
of the restarted instances will be different thus forcing us to
remake all changes which are based on the private interface
address. In addition, if we used the placement group fea-
ture of the Amazon cluster compute instances during initial
configuration of the cluster, trying to stop and start these in-
stances might not work because of the capacity limitation
within that placement group. The placement group is tied
to a deployment rack in Amazons data center and instances
are physically tied to that rack. If some other instances
start running in this location while our instance is stopped
we cannot restart our stopped instance as our instances stay
tied to their racks for their lifetime.

Clusters

All results presented in this paper were collected from
multiple-user production environments. Table 1 listed four
different clusters that we used to compare performance
and cost. Except Amazon EC2 cluster, the other three
run CentOS Linux 5.5 provisioned by Perceus [9] on bare
metal. CentOS 5.4 Linux is run on Amazon EC2 virtual
cluster to make a fair comparison. However since we were
not able to access the hyper-threading configuration on
Amazon public cloud, it is not only running in a virtual en-
vironment, but also running with hyper-threading enabled
which can reduce performance depending on application.
For the interconnect, Amazon EC2 is equipped with 10Gb
Ethernet, LRC has 4X DDR Infiniband with 3:1 blocking
factor, Mako has 4X QDR non-blocking Infiniband, and
LR2 has 4X QDR 3:1 blocking Infiniband. Among all four
clusters, Amazon EC2 and Mako use Intel Nehalem, and
LR2 uses Intel Westmere processor technology. Only LRC
uses the last generation Intel Harpertown technology.

PERFORMANCE ANALYSIS

GeneticTracy

Lattice Optimization problem with a population size of
50K was run over 1000 generations on all the aforemen-
tioned local shared clusters and the virtual cluster within
Amazon public cloud. Table 2 lists the total time taken by
the optimization on various clusters. GeneticTracy is a typ-
ical embarrassingly parallel code, and it does not require
too much memory, thus the performance is tightly coupled
with the CPU architecture and frequency but not the inter-
connect and memory subsystems. As a result, it is well
suited for the Amazon EC2 platform as well as the stan-

Table 1: System Configurations

EC2 LRC Mako LR2

CPU Arch. X5570 E5430 E5530 X5650
CPU Freq.1 2.93 2.66 2.40 2.66
Cache 8 MB 12 MB 8 MB 12 MB
HT On Off Off Off
Interconnect2 10 20 40 40
Virtualization On Off Off Off
Cores/Node 16 8 8 12
Memory/Node 23 GB 16 GB 24 GB 24 GB
1. GHz
2. Gb/s

dard instances. Running on EC2 achieves the flexibility
that other shared resources are not able to to provide. For
instance, one of the advantages of EC2 is HPC on demand,
which provides a mean to require CPU hours when needed.
This is extremely useful for researchers to blast large num-
bers of jobs to search for optimal parameters at the trial
stage, or to achieve high throughput during computation.
By applying on-demand HPC method, one does not have
to wait for queues to be available from a shared resource,
or be restricted by the job limit that is typically enforced
on most shared resources to ensure a fair use. Running on
a public cloud also saves the cost of maintaining a local
cluster.

Table 2: GeneticTracy Runtime on Various Clusters

EC2 LRC Mako LR2

Time (mins) 679 857 724 566

General Performance

During this research, we systematically evaluated per-
formances of CPU, memory, interconnect subsystems, as
well as the overall system performance and the perfor-
mance of the GeneticTracy application. However, since
GeneticTracy is only a trivial parallel application, it does
not reveal the Amazon EC2 performance for other types
of scientific computing programs, especially those heavily
parallelized applications which take advantage of modern
high speed interconnects, e.g., MPI. Here we demonstrate
the overall performance with one of the most commonly
used benchmarks – High-Performance Linpack (HPL) [10]
for all these four clusters. HPL is a benchmark that solves
a random dense system of linear equations on a wide va-
riety of distributed memory machines. It is adopted by
TOP500 [11] supercomputing site as the primary bench-
mark for acceptance. Due to the nature of this benchmark,
it provides the capability to stress CPU, memory, and inter-
connect subsystems, and evaluate the system performance
as a whole. Figure 1 shows Rmax/Rpeak vs number of

WEP151 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

1768C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques

nodes used, in which Rmax is the maximal Linpack perfor-
mance achieved, and Rpeak is the theoretical peak perfor-
mance, thus Rmax/Rpeak provides a way to estimate how
efficient the system is to achieve the peak performance at
various configurations. From this figure we can clearly see
that LRC, Mako and LR2 are all consistent on this effi-
ciency up to 16 nodes, which suggests that the performance
degradation is not significant when the number of nodes is
increased. Nonetheless, Amazon EC2 drops considerably
from 87% on one node (8 processors) to 67% on 16 nodes
(128 processors). The major reason for this is the subop-
timal virtual 10Gb Ethernet interconnect. We were able
to reach close to 400 Mbps of uni- and bi-directional net-
work bandwidth. Compared to Infiniband used on all other
local clusters, this result is expected and reasonable. We
also notice that the memory subsystem can only achieve
50∼60% of theoretical memory bandwidth. This also lim-
its the HPL performance at large N value. Although the
performance efficiency of CCI instances is better than that
of the original EC2 standard instances (23∼27%) [5], we
see that Amazon EC2 CCI suffers from performance degra-
dation for large scale parallel MPI applications, especially
network or memory bound applications. Nevertheless, the
CCI offering is a great improvement, which has made the
Amazon public cloud even more attractive, especially for
those who require access to small to mid-range HPC clus-
ters.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 2 4 8 16

R
m

ax
 /

R
pe

ak
 (

%
)

Nodes

EC2
LRC

Mako
LR2

Figure 1: HPL Rmax/Rpeak vs number of nodes.

SUMMARY

Cloud computing has attracted a lot of attention recently.
Amazon also provides HPC cloud as a pay-as-you-go us-
age model. The flexibility gives users the choice of saving
cost by not maintaining small to medium sizes of in-house
clusters, as well as provides the high throughput capabil-
ity. The performance on the recently introduced CCI has
also been greatly increased to meet the growing needs from
the scientific computing community, which makes it a good
candidate to researchers seeking on-demand computing ca-
pacity. However, as demonstrated in this paper, EC2 may

not work well for large scale parallel applications, which
represent a large number of scientific HPC applications.

ACKNOWLEDGEMENTS

This research used various resources provided by Lab-
oratory Research Computing (LRC) [12], which is man-
aged by the LBNL IT Division; as well as resources from
the University of California Shared Research Computing
Services (ShaRCS) Cluster [13], which is managed by the
LBNL IT Division and SDSC for the University of Califor-
nia, Office of the President. The authors would also like to
thank David Robin and Jerry Kekos from ALS, Gary Jung
from IT Division for their encouragement and support, as
well as Andrew Paoli and Miles Ward from Amazon for
their assistance and help.

REFERENCES

[1] C. Sun et al., these proceedings, TUODN4.

[2] “1-2 GeV Synchrotron Radiation Source, Conceptual De-
sign Report,” LBL PUB-5172 Rev. LBL, 1986.

[3] H. Nishimura, “Goemon, A C++ Library for Accelera-
tor Modeling and Analysis”, Proceedings of PAC 2001,
Chicago, June 2001.

[4] C. Sun et al., these proceedings, WEP031.

[5] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cho-
lia, J. Shalf, H. Wasserman and N. Wrigh, “Performance
Analysis of High Performance Computing Applications on
the Amazon Web Services Cloud”, 2nd IEEE International
Conference on Cloud Computing Technology and Science,
December 2010, Indianapolis, IN.

[6] K. Jackson, L. Ramakrishnan, K. Runge and R. Thomas,
“Seeking Supernovae in the Clouds: A Performance Study”,
ACM Science Cloud 2010, June 2010, Chicago, IL.

[7] L. Ramakrishnan, K. Jackson, S. Canon, S. Cholia and
J. Shalf, “Defining Future Platform Requirements for e-
Science Cloud”, ACM Symposium on Cloud Computing,
June 2010, Indianapolis, IN.

[8] Amazon Elastic Compute Cloud (Amazon EC2),
http://aws.amazon.com/ec2.

[9] Provision Enterprise Resourses and Clusters Enabling Uni-
form Systems (Perceus), http://www.perceus.org.

[10] HPL - A Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers,
http://www.netlib.org/benchmark/hpl/.

[11] TOP500, http://www.top500.org.

[12] Laboratory Research Computing (LRC),
http://lrc.lbl.gov.

[13] UC Shared Research Computing Services (ShaRCS),
http://srcs.ucop.edu.

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA WEP151

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques 1769 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

