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Abstract 

A realistic approach to calculate the transport matrix in 
RF cavities is developed. It is based on joint solution of 
equations of longitudinal and transverse motion of a 
charged particle in an electromagnetic field of the linac. 
This field is a given by distribution (measured or 
calculated) of the longitudinal electric field on the axis of 
the linac. This new approach is compared with other 
matrix methods to solve the same problem. The 
comparison with code ASTRA has been carried out. A 
complete agreement for tracking results for a TESLA-
type cavity is achieved. A corresponding algorithm will be 
implemented into the MARS15 code. 

TRANSVERSE MOTION OF THE 
CHARGE PARTICLE IN THE RF CAVITY 

Let us consider a cavity with the given distribution of 
longitudinal field along its axis, so that the function 

( )zE z
 

is known. Other components, radial electrical 

field ( )rE z
 
and azimuthal magnetic one ( )H z

 
can be 

expressed according to the following Maxwell’s 
equations: 
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where r  is the distance from the cavity axis and   is
 
the 

relative velocity of the particle. These transverse fields 
result in a beam focusing due to Lorenz force: 
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where ,  q m
 
are charge and mass of the particle. In the 

case of an axially-symmetric cavity the following 
equation for transverse motion of the particle can be 
obtained from expression (1): 

2

2 2 2

1 1
.

2
zEqx x x

mc z
 

   
   


 (2) 

Here the prime means derivative with respect to z . 
Usually, the motion of a particle is considered as ultra 

relativistic, so that  2 21 2 1   , but we will not 

restrict ourselves to this case only. 
The standard approach [1, 2] is as follows. The 

electromagnetic field of an RF cavity includes a few 
higher spatial (temporal) harmonics. For this reason it is 

possible to present the motion of the charge particle as 
 sum of two components: smooth (“slow”) and “fast” and 

apply the matrix approach to solve the equation (2) . After 
averaging over time, significantly longer than 
characteristic time of the fast component, and after the 
necessary transformations, it is possible to reduce the 
equation (2) to the following form: 
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Some special factor ( )   appears [1,2] in this equation 

to takes into account an RF-field structure in the cavity 
and particle’s phase head of crest,   . 

The solution of equation  for an ultra relativistic particle 
in the case of the “pure” (without other spatial harmonics) 
 mode of the field in the cavity can be written using 
the matrix obtained Chambers [3, 4], which already takes 
into account the effect of the edges in  transverse focusing 
[1, 5] at cavity entrance/exit: 
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The components of matrix Chambers ChM  are: 
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where 
1

ln
8 cos

f

i





 .  

Some other matrix representations of the particle motion 
in the cavity are discussed in details in Ref. [6]. 

NEW MATRIX APPROACH 
The main feature of this approach is to use the known 
distribution of the electric field at the cavity axis 

( , )zE z t , and the paraxial approximation for the particle 
 ___________________________________________  
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motion. In a general case we are not considering ultra 
relativistic energies of the beam  

Equation and Solution 
The equation for the longitudinal motion (acceleration) 

of a particle in the RF field is the following: 

( , ).z
d q E z t
dt mc
 
   (6) 

The equation for transverse motion can be rewritten 
from (2) in  more convenient form [6]: 

0.
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For an RF cavity with the transverse TM-mode 

 0( , ) ( )coszE z t E z t     (8) 

the equation (7) takes the form 
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and the equation (6) can be integrated, so that relative 
gain /   of the particle energy while moving through 

the cavity during the time interval t t t   is equal to 

0 sin( / 2)
cos( ).

/ 2

q E tt t
mc t
   

  
 

    


 (9) 

All “bar-values” in this expression are referred to the 
moment / 2t t . It is convenient to use a “length” 

ct  , wave number 0 /k w c  and express the 

amplitude of the electric field as 
2

0 0 /E qE mc . Then 

one can find the final equation for the transfer motion (a 
sign “ ' ” means now the derivative with respect to length, 
  ): 
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To integrate this equation over   it is necessary to 
present the whole integration range as a number of 
subintervals (slices)       and corresponding 
slices z z z   . On each of these subintervals one can 
neglect a change of parameters ,     as well as of the 

values of the field 0 ( )E z  and its derivative. In this 

approach, instead of equation (10) one has the simplest 
equation of the second order with “constant” coefficients: 

0,x zx bx   
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with ( )z  , ( )z   and ,  z  are the centers 

of the slices. It is quite easy to find a solution to this 

equation for the coordinate fx  and angle fx  at the exit 

of the cavity using their values ,  i ix x  at the entrance: 
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where .
 

2
1,2 ( 4 ) / 2a a b      These expressions 

allow one to find the desired matrix of the transformation 
of the coordinate vector during particle passage  through 

the cavity. Let us use the coefficients 1,2  and introduce 

the following parameters: 
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So, 1,2      and after simple manipulations the 

following result will be found for the matrix M  of the 
slice of the cavity with length  :
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It is is very simple to calculate the determinant of the 
transport matrix M  of the cavity: 

2 /det M e e       . As mentioned above, during 
slicing of the whole cavity in order to integrate the 
equation of transverse motion of the particle it is 
necessary to take into account that for each slice the 
relative acceleration rate must be small, i.e. for all 
subintervals with length   the value / 1   , so it 

is possible to replace the direct integration by a solution 
which uses the matrix approach. 
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Verification of the New Approach 
To verify this approach, the code MatLab Dark Current 

(MLDC) was created. This code realizes two possibilities: 
direct integration of equation (11) by method Runge-
Kutta with a fixed time step (4th order; function ode45 
from the MatLab package) and matrix approach (using 
expressions(12)) for this equation. To calculate the 
acceleration rate the expression (9) was used. 

The results of simulations with the code MLDC were 
compared with the results (naturally, for the same input 
data), received while using  the code ASTRA (A Space 
charge TRacking Algorithm) [7].  

To compare both codes, the TESLA-type cavity is used 

with field amplitude 0 36.815 /E MV m  MV/m. 

Results of the scanning over a phase for both codes are 
shown in Fig. 1.  

 

 
Figure 1: Energy gain in the Tesla-type cavity depending 
on phase of the particle. 

 

 
Figure. 2: Acceleration in the Tesla-type cavity. 

 
The Fig. 2 is illustrated the process of the acceleration 

and gives the same results for both codes.  
Next figures demonstrate the result of tracking with 

both codes in the cases of DI (direct integration) and MA 
(matrix approach). 

A complete agreement between all results is achieved. 
It proves the validity of the code MLDC and approaches 
used to create it. 

 

 
Figure 3: Particle’s track (DI approach). 0 2.5E MeV .  

 

 
Figure 4: Particle’s track (MA approach). 

0 2.5E MeV . 

CONCLUSIONS 
A realistic approach to calculate the transport matrix in 

RF cavities is developed. Complete agreement for 
tracking results with existed code ASTRA is achieved. 
New algorithm will be implemented into MARS15 code. 
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