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Abstract 
Charged-particle motion is studied in the self-electric 

and self-magnetic fields of a well-matched, intense 
charged-particle beam and an applied periodic solenoidal 
magnetic focusing field. The beam is assumed to be in a 
state of adiabatic thermal equilibrium. The phase space is 
analyzed and compared with that of the well-known 
Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It 
is found that the widths of nonlinear resonances in the 
adiabatic thermal beam equilibrium are narrower than 
those in the KV-type beam equilibrium. Numerical 
evidence is presented, indicating almost complete 
elimination of chaotic particle motion in the adiabatic 
thermal beam equilibrium. 

INTRODUCTION 
Several kinetic equilibria have been discovered for 

periodically focused intense charged-particle beams. 
Well-known equilibria for periodically focused intense 
beams include the Kapchinskij-Vladimirskij (KV) 
equilibrium in an alternating-gradient (AG) quadrupole 
magnetic focusing field [1,2]  and the periodically 
focused rigid-rotor Vlasov equilibrium of the KV type in 
a periodic solenoidal magnetic focusing field [3,4]. Both 
of these beam equilibria [1-4] have a singular 
(  function) distribution in the four-dimensional phase 
space. Such a  function distribution gives a uniform 
density profile across the beam in the transverse 
directions, and a transverse temperature profile which 
peaks on axis and decreases quadratically to zero on the 
edge of the beam. Because of the singularity in the 
distribution functions, these beam equilibria are not likely 
to occur in real physical systems and cannot provide 
realistic models for theoretical and experimental studies 
and simulations except in the zero-temperature limit. For 
example, the KV equilibrium model cannot be used to 
explain the beam tails in the radial distributions observed 
in recent high-intensity beam experiments [5]. Recently, 
adiabatic thermal beam equilibria have been discovered in 
a periodic solenoidal magnetic focusing field [6-8] and an 
AG quadrupole magnetic focusing field [8,9]. The 
measured density distribution [5] matches that of the 
adiabatic thermal beam equilibrium in a spatially varying 
solenoidal magnetic focusing field [6,8].  

There have been many studies of charged-particle 
dynamics in the KV-type equilibria [10-14]. These studies 
have shown that the phase space for the KV-type 
equilibria exhibits rich nonlinear resonances and chaotic 
seas for charged particles outside the beam envelope 
[10,11]. If charged particles cross the beam envelope due 
to perturbations, they may enter chaotic seas to form a 
beam halo or cause beam losses [12-14].  

THEORY AND SIMULATION 
We study charged-particle dynamics in the adiabatic 

thermal equilibrium of an intense charged-particle beam 
propagating with constant axial velocity zbcê  in the 

periodic solenoidal magnetic focusing field [15] 
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where zs   is the axial coordinate,    sBSsB zz   is 

the axial magnetic field, S  is the fundamental periodicity 
length of the focusing field, and c  is the speed of light in 
vacuum. The adiabatic thermal beam equilibrium has 
been derived under the paraxial approximation with the 
following assumptions: 1) Srbrms  , where brmsr  is the 

RMS beam radius and 2) 1/ 23 bb , where 
22 / mcNq b  is the Budker parameter of the beam,  q  

and m  are the particle charge and rest mass, respectively, 

  rdrsrnN bb 2,
0


 = const is the number of particles 

per unit axial length, and 2/12 )1(  bb   is the 

relativistic mass factor.  
In the adiabatic thermal beam equilibrium [6-8], the 

beam density distribution is given by 























 )(

),(

4)(

4

2
exp

)(

4
),(

22

2

2

2

2

2

sTk

srqr

sr

K

sr

C
srn

Bbthbrms

th

brms

th
b 





,  (2) 

and the self-electric potential ),( sr  is determined by the 

Poisson equation 
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and the free-space boundary conditions. In Eqs. (2) and 

(3), C  is a constant determined by   rdrsrnN bb 2,
0


 , 

2232 /2 cmNqK bbb   is the generalized beam perveance, 

  2/1222 2/)( cmrsTk bbbrmsBth    is the RMS thermal 

emittance in the Larmor frame,  sincos~ yxx   and 

 cossin~ yxy   where 
s

z dss
0

)( , )(sT  is the 

Kelvin temperature of the beam, Bk  is the Boltzmann 

constant, and the  RMS beam envelope )(srbrms   

)( Ssrbrms   solves the beam envelope equation  
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where 22)()( cmsqBs bbzz    and 2
~

22 /1 rmsxthb    
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Figure 1: Plots of a) normalized density  0,0/ KVb nn  and 

b) normalized radial self-electric field bthr qNKES 2/12/3 4/ 
 

versus normalized radius Sr th4/  in the KV-type beam 

equilibrium (dashed curve) and the adiabatic thermal 
beam equilibrium (solid curve) at 0s  for the same 
choice of system parameters as in Fig. 1. Here,  0,0KVn

 is the density of the KV-type beam equilibrium at 0s
 and 0r

. 

with rmsx~  being  the RMS emittance in the x~ -direction.  

Figure 1 shows a) density bn  and b) radial self-electric 

field rE  for the KV-type and adiabatic thermal beam 

equilibria at 0s  for the choice of system parameters 

corresponding to       SssS z /2cos13/2 0
2/1   , 

0.74/ thSK  , 0b , and  800 . For 0b , 

rmsxth ~   and the KV-type and adiabatic thermal beam 

equilibria have the same RMS beam envelopes. While the 
self-electric fields of the two beams are similar, there are 
three important differences: a) the density in the interior 
for the adiabatic thermal beam is higher than that for the 
KV-like beam; b) the electric field near the normalized 

radius 0.24/ Sr th  has a smooth transition from 

negative to positive slope for the adiabatic thermal beam, 
whereas its radial derivative is discontinuous for the KV-
type beam equilibrium; c) the self-electric field near the 
edge of the adiabatic thermal beam is weaker than that of 

 

 
Figure 2: Poincare surface-of-section maps of charged-
particle trajectories in a) KV-type beam equilibrium and 
b) adiabatic thermal beam equilibrium for 

0
P

 and the 
same choice of system parameters as in Fig. 1. Here, the 

normalized radial momentum is   dsdrS th /4/ 2/1  and 

the normalized radius is Sr
th

4/
. 

the KV-type beam. These differences result in significant 
changes in charged-particle dynamics (see Figs. 2 and 3). 

The radial equation of motion of a charged particle in 
the cylindrical coordinates is [15] 
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where the canonical angular momentum P  is conserved. 

Figure 2 shows a comparison between the Poincare 
surface-of-section maps of charged-particle trajectories in 
a) KV-type beam equilibrium and b) adiabatic thermal 
beam equilibrium for the choice of system parameters 

corresponding to       SssS z /2cos13/2 0
2/1   , 

0P ,  800 , 0b , and 0.74/ thSK  . They are 

generated by plotting  rPr,  as a trajectory arrives at the 

lattice points 0/ Ss , 1, 2, …, 2000. For these 
parameters, the density for the KV-type beam equilibrium 

drops abruptly at 0.24/ Sr th , whereas the density 

for the adiabatic thermal beam equilibrium falls from its 

flat top value to almost zero between 6.14/ Sr th  and  
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Figure 3: Close ups of Poincare surface-of-section maps 
of charged-particle trajectories for the two cases shown in 
Fig. 2. 

2.4. For 0.24/ Sr th , the phase space is regular in 

both the KV-type and adiabatic thermal beam equilibria, 
and the action of a charged particle in the KV-type beam 
is larger than that in the adiabatic thermal beam, as shown 
in Fig. 2. The phase space area (action) of a charged 
particle in the interior of the adiabatic thermal beam is 
significantly smaller than that of the KV-type beam 
because the density of the adiabatic thermal beam 
approaches the density of the corresponding cold beam, 
which is higher than the density of the KV-type beam.  

In the region 4.24/2  Sr th , however, there are 

striking differences between the KV-type and adiabatic 
thermal beam equilibria, as shown in Fig. 3. Comparing 
Fig. 3(a) with Fig. 3(b), there are two important 
differences to note. First, there are chaotic seas in the 
phase space of the KV-type beam, whereas chaotic 
motion is almost absent in the phase space of the 
adiabatic thermal beam equilibrium. Second, the widths 
of the nonlinear resonances in the adiabatic thermal beam 
equilibrium are narrower than those in the KV-type beam 
equilibrium. For example, the width of the nonlinear 

resonance at    0,36.2,4/  PSr th  is  Sr th4/   

013.0 in the adiabatic thermal beam, whereas the width of 
the corresponding resonance in the KV-type beam is 

021.04/  Sr th .  

CONCLUSION 
We analyzed charged-particle motion in the self-

electric and self-magnetic fields of an adiabatic thermal 
beam in a period solenoidal magnetic focusing field. We 
compared the phase space of the adiabatic thermal beam 
equilibrium with that of a corresponding KV-type beam 
equilibrium. We found that the widths of some of the 
nonlinear resonances in the adiabatic thermal beam 
equilibrium are narrower than those in the KV-type beam 
equilibrium.  We presented numerical evidence for almost 
complete elimination of chaotic particle motion in the 
adiabatic thermal beam equilibrium. 
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