
TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS
OPTIMIZATION∗

L. Yang† , BNL, Upton, NY 11973, USA

Abstract

Dynamic aperture (DA) optimization with direct particle
tracking is a straight forward approach when the comput-
ing power is permitted. It can have various realistic errors
included and is more close than theoretical estimations. In
this approach, a fast and parallel tracking code could be
very helpful. In this presentation, we describe an imple-
mentation of storage ring particle tracking code TESLA for
beam dynamics optimization. It supports MPI based paral-
lel computing and is robust as DA calculation engine. This
code has been used in the NSLS-II dynamics optimizations
and obtained promising performance.

INTRODUCTION

TESLA is an accelerator lattice calculation and single par-
ticle dynamics tracking code. It starts as an engine for lin-
ear lattice optimization at ALS, LBNL and dynamic aper-
ture (DA) tracking at NSLS-II, BNL. Recently this code
was used with multi-objective evolutionary algorithm to
optimize DA at various momentum and positive chromatic-
ities [1] and satisfied performance are obtained.

The input file format for TESLA is quite similar to MAD8
but the hierarchy of elements and beamlines are kept inter-
nally. Expressions and references are available in nature
form and common mathematical functions are supported.
The input files can be nested by “include” command.

In TESLA, the physics model of magnetic elements are
mainly symplectic integrator and the default is Yoshida
scheme [2]. The dipole model is based on exact solutions
using exact Hamiltonian [3] and this is much faster than
the usual integration over slices. Insertion device such as
damping wiggler is modeled by kickmap as usual.

Dynamic aperture (DA) tracking is done in both x–y and
δ–x plane in a multiparticle way to improve the speed. Fre-
quency map analysis (FMA) is implemented as part of the
external toolkits, both serial and MPI based parallel ver-
sions are available. Visualization is done in accompanying
Python scripts.

The strategy of TESLA development is that it is a library
first then a standalone application. The library form can
be called by scripting languages and serve as computing
engine for parallel applications on clusters. The later is
only for users interested in tools easy to learn and to use on
their PC.

∗Work supported by DOE contract number DE-AC02-98CH10886
† lyyang@bnl.gov

LATTICE FORMAT AND GENERAL
PARSER

The input file is parsed by a module called GLPS (gen-
eral lattice parser). It is designed for parsing the accelerator
layout description file and outputs simple flat form. The flat
form will have only numbers instead of mathematical ex-
pressions or references to variables and the beamline will
be expanded into element list from a multiplication and re-
verse. Because it does not depend on keywords, this is gen-
eral enough to be a parser for other accelerator simulation
codes.

The input file of TESLA has three types of statements

1. Element and beam line definition. This is quite same
as MAD8, but internally in the parser, hierarchy is
kept in the beamline definition.

QF: Quad,L =0.2, K1=0.2, shift=(3e-6,5e-6,0),

method="Yoshida4";

BD: Bend, L=2.0, angle=pi/60, e1=pi/120;

FAKE: LINE = (2*QF, BD, -BD, -2*(QF,QF,BD,BD));

2. Expression: var = expression, the expression can
be single value or a vector.

speed_of_light = 3e8;

A = (0, .2, 0);

QF.K1 = 0.2; ! K1 field of QF element

QD.K2 = -QF.K1;

Variables can be referred in the expressions. Common
mathematical expressions and constants are included,
e.g. sin, exp, pi.

3. Action. It starts with an action name, then a list of key
and value pairs.

set, title="new lattice";

set, energy=3.0;

track, method="matrix", orbit=(1e-6,0,0,0,0,0);

The comments start with “!” for single line and are
inside “{}” for one block. By using an action
“include, ‘‘layout.lat’’”, it is possible to nest one
lattice file in the other and it is a good practice to put the lat-
tice layout in one file while include it in different “action”
file for different simulations.

GLPS (general lattice parser) can be used by any simu-
lation code which has an input grammar as the following

statement: exprs | element | actions | line ;

exprs: var = expr

actions: action, exprs

element: family, exprs

line: line=(expr, ...)

WEP066 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

1600C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques

Figure 1: Class hierarchy of common elements

The input file is parsed to a linked list of key-value pairs,
a flat form, and a simulation code will go through this list
to construct elements. In this linked list, the multiplication,
nesting and reverse of beamlines are expanded into list of
elements, but the nesting structure is kept in its “full name”.
For example, a beamline

BL1: LINE=(D,B);

BL2: LINE=(BL1, D, 2*(B,F), -(C,E,-(F,G)));

will be expanded as BL1: (BL1.D, BL1.B) and BL2:
(BL2.BL1.D, BL2.BL1.B, BL2.D, BL2.B, BL2.F, BL2.B,
BL2.F, BL2.F, BL2.G, -BL2.E, -BL2.C). The new ele-
ment name (full name) in the beamline has “domain” in-
formation, and its order is the order of nesting. The ele-
ment which is defined in one place but put in several places
in a beamline has different “full name”, e.g. BL2.BL1.B,
BL2.B. The multiple reverse sign (-) are merged according
to “double reverse is identity” rule, but the parser can also
keep the numbers of reverse sign. This approach has been
more powerful and general than using pointer or a family
name to represent elements from same definition.

OBJECT AND PHYSICS MODEL

The TESLA library is written in C++ in an object ori-
ented way. The common storage ring elements are ab-
stracted as different C++ class inherited from a root
class Element(see Fig. 1). The Element class is called
abstract class and defines the interface for inherited classes.
e.g. track, matrix are the common routines that every
element should implement. This makes the concept more
clear when expanding, e.g. track, to a set of DA vector or
DA map from simply particle coordinate.

The class hierarchy is shown in Fig. 1. Two possibly
different classes are Bpm and Kicker, which are inher-
ited from Drift. In this way they can have finite length.
Dipole inherits from Multipole to use the symplectic
integrator when the multipole components exist (errors or
real field).

The physics model for elements are matrix concatena-
tion and symplectic integrator. The former follows linear
and second order matrix theory as other codes did. The
symplectic integrator adapts Yoshida scheme with a default
4th order [2]. Fig. 2 illustrates the drift-kick patterns for
this 4th order integrator. An example phase plot of NSLS-II
lattice is shown in Fig. 3, where most of the magnets are us-
ing symplectic integrator and damping wigglers are using

Figure 2: Drift-kick illustration of Yoshida scheme 4th or-
der symplectic integrator. The top(black) arrows are re-
duced form of particle flow path, the bottom(red) arrows
are equivalent full flow path.

kickmap. This plot is not meant to prove the symplecticity
but to show good stability in both planes for 2048 turns of
tracking.

Figure 3: Phase plot of an example NSLS-II lattice (in
the unit of mm and mrad). Quadrupoles, sextupoles and
damping wigglers are included. The top and bottom plots
are for x–px and y–py plane.

Slicing is allowed when the element is long or a higher
orbit precision is required. The elements modelled by
kickmap are also implemented [4]. Radiation in dipoles
is implemented using classical formula. The RF effects are
also included.

Errors including misalignment are implemented as an
external class. This makes various kind of error distribu-
tions available and in a central way.

TOOLKIT

TESLA is developed first as a library for single particle
dynamics. It focuses on fast and defailted particle track-
ings. For simulations where intensive tracking required,
TESLA acts as an low level engine. The parallelization
and physics optimization are on top of this tracking engine.
Two examples are parallel FMA (frequency map analysis)
and dynamic aperture optimization. The author believed
that the parallization above the level of single particle track-
ing, or above the TESLA library could be more flexible and

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA WEP066

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques 1601 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

efficient, especially when no interaction between particles
are concerned most of the time.

There are NAFF (numerical analysis of fundamen-
tal frequency) routine in TESLA and two classes
FrequencyAnalyzer and FrequencyMap are imple-
mented for frequency analysis based on turn by turn orbit
data. A parallel FMA toolkit is developed with these rou-
tines. It includes tracking, analysis and visulization. Track-
ing and frequency analysis part are done in TESLA library.
On a MPI based cluster, particles are distributed into differ-
ent nodes, where serial tracking and frequency analysis are
done. The results are merged to one HDF5 file for postpro-
cessing with Python scripts. Since the output data format is
standard and accepted by commercial tools like Matlab and
Mathematica, the postprocessing tools have more choices.

Figure 4: An example FMA on x–δ plane. 14460 particles
on a regular grid are tracked on 80 CPUs.

An example of FMA is shown in Fig. 4, where 14460
particles on regular x–δ grid are tracked on 80 CPUs for
1024 turns. The NSLS-II lattice which has over 3000 ele-
ments in this case and about 800 meter circumference are
used as an example. It took about 5 minutes to generate
this plot.

The DA optimization is another parallel code using
TESLA library as tracking engine. It uses multi-objective
evolution algorithm [5] and runs on MPI based cluster.
This optimization uses DA as objective functions by direct
particle tracking, both on-momentum and off-momentum
DA. Given the objective function, either the average of off-
momentum DA or the stable area in x–δ plane, the opti-
mizer analyze the results and generates a new set of input
lattice, then call TESLA for a new tracking of DA. Itera-
tively a final set of solutions are obtained.

In TESLA, the DA searching is done along radial lines in
x–y plane and also regular grid for x–δ (usually with grid
size less than 0.1 mm for x and 0.1% for δ in our case).
When searching along the radial lines, about 10–20 parti-
cles initially distributed on that line are tracked. From in-

ner to the outer particles along the radial line, the bounary
of live-dead particles is searched. The space between the
particles is the precision of DA searching. Then 10–20 par-
ticles distributed across the boundary but in a smaller range
than before are tracked. This procedure is repeated until the
precision is high enough.

Figure 5: Survival turns of particles at x–y plane and x–
δ plane. 14460 particles in total are tracked on a parallel
cluster.

The survival plot of one optimization is shown in Fig. 5.
Particles in two planes, (x, y, δ = 0) and (x, y = 1μm, δ),
are tracked. The maximum survival turns are plotted on
x–y and x–δ plane.

I thank the support from S.Y. Lee, D. Robin, C. Steier
and S. Krinsky for their encouragement, R. Popescu for
technique support on our cluster, F. Lin for being first us-
ing these tools and providing feedbacks, other collegues for
their interests and collabrations.

REFERENCES

[1] L. Yang, Y. Li, W. Guo, S. Krinsky, PAC’11, March 2011,
New York.

[2] Haruo Yoshida, “Construction of Higher Order Symplectic
Integrators”, Physics Letters A 150, 262–268, 1990.

[3] Etienne Forest, “Geometric integration for particle accelera-
tors”, Journal of Physics A: Mathematical and General 39,
5321–5377, 2006.

[4] P. Elleaume, EPAC’92, p661, 1992.

[5] K. Deb, “Multi-Objective Optimization using Evolutionary
Algorithms”, Wiley 2004.

ACKNOWLEDGEMENTS

WEP066 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

1602C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques

